These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 15805084)
1. Responses of deciduous forest trees to severe drought in Central Europe. Leuzinger S; Zotz G; Asshoff R; Körner C Tree Physiol; 2005 Jun; 25(6):641-50. PubMed ID: 15805084 [TBL] [Abstract][Full Text] [Related]
2. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Klein T; Vitasse Y; Hoch G Tree Physiol; 2016 Jul; 36(7):847-55. PubMed ID: 27126226 [TBL] [Abstract][Full Text] [Related]
3. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524 [TBL] [Abstract][Full Text] [Related]
4. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Körner C; Asshoff R; Bignucolo O; Hättenschwiler S; Keel SG; Peláez-Riedl S; Pepin S; Siegwolf RT; Zotz G Science; 2005 Aug; 309(5739):1360-2. PubMed ID: 16123297 [TBL] [Abstract][Full Text] [Related]
5. Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tognetti R; Cherubini P; Marchi S; Raschi A Tree Physiol; 2007 Dec; 27(12):1741-51. PubMed ID: 17938105 [TBL] [Abstract][Full Text] [Related]
6. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Cano FJ; Sánchez-Gómez D; Rodríguez-Calcerrada J; Warren CR; Gil L; Aranda I Plant Cell Environ; 2013 Nov; 36(11):1961-80. PubMed ID: 23527762 [TBL] [Abstract][Full Text] [Related]
7. Elevated CO2 reduces sap flux in mature deciduous forest trees. Cech PG; Pepin S; Körner C Oecologia; 2003 Oct; 137(2):258-68. PubMed ID: 12898382 [TBL] [Abstract][Full Text] [Related]
8. Expanding leaves of mature deciduous forest trees rapidly become autotrophic. Keel SG; Schädel C Tree Physiol; 2010 Oct; 30(10):1253-9. PubMed ID: 20688879 [TBL] [Abstract][Full Text] [Related]
9. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Choat B; Ball MC; Luly JG; Donnelly CF; Holtum JA Tree Physiol; 2006 May; 26(5):657-64. PubMed ID: 16452079 [TBL] [Abstract][Full Text] [Related]
10. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Arend M; Brem A; Kuster TM; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350 [TBL] [Abstract][Full Text] [Related]
11. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Barbaroux C; Bréda N Tree Physiol; 2002 Dec; 22(17):1201-10. PubMed ID: 12464573 [TBL] [Abstract][Full Text] [Related]
12. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications. Rodríguez-Calcerrada J; López R; Salomón R; Gordaliza GG; Valbuena-Carabaña M; Oleksyn J; Gil L Plant Cell Environ; 2015 Jun; 38(6):1104-15. PubMed ID: 25292455 [TBL] [Abstract][Full Text] [Related]
13. Coordination of crown structure, leaf plasticity and carbon gain within the crowns of three winter-deciduous mature trees. Uemura A; Harayama H; Koike N; Ishida A Tree Physiol; 2006 May; 26(5):633-41. PubMed ID: 16452077 [TBL] [Abstract][Full Text] [Related]
14. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Xu L; Baldocchi DD Tree Physiol; 2003 Sep; 23(13):865-77. PubMed ID: 14532010 [TBL] [Abstract][Full Text] [Related]
15. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Köcher P; Horna V; Leuschner C Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137 [TBL] [Abstract][Full Text] [Related]
16. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Mediavilla S; Escudero A Tree Physiol; 2003 Oct; 23(14):987-96. PubMed ID: 12952785 [TBL] [Abstract][Full Text] [Related]
17. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
18. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Genet H; Bréda N; Dufrêne E Tree Physiol; 2010 Feb; 30(2):177-92. PubMed ID: 20018984 [TBL] [Abstract][Full Text] [Related]
19. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Martínez-Vilalta J; Mangirón M; Ogaya R; Sauret M; Serrano L; Peñuelas J; Piñol J Tree Physiol; 2003 Aug; 23(11):747-58. PubMed ID: 12839728 [TBL] [Abstract][Full Text] [Related]
20. Physiological performance of beech (Fagus sylvatica L.) at its southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Nahm M; Radoglou K; Halyvopoulos G; Gessler A; Rennenberg H; Fotelli MN Plant Biol (Stuttg); 2006 Jan; 8(1):52-63. PubMed ID: 16435269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]