BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15805089)

  • 1. Decreasing photosynthesis at different spatial scales during the late growing season on a boreal cutover.
    Martel MC; Margolis HA; Coursolle C; Bigras FJ; Heinsch FA; Running SW
    Tree Physiol; 2005 Jun; 25(6):689-99. PubMed ID: 15805089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology†.
    Jensen AM; Warren JM; King AW; Ricciuto DM; Hanson PJ; Wullschleger SD
    Tree Physiol; 2019 Apr; 39(4):556-572. PubMed ID: 30668859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide exchange in Norway spruce at the shoot, tree and ecosystem scale.
    Wallin G; Linder S; Lindroth A; Räntfors M; Flemberg S; Grelle A
    Tree Physiol; 2001 Aug; 21(12-13):969-76. PubMed ID: 11498344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations.
    Li X; Xiao J; He B; Altaf Arain M; Beringer J; Desai AR; Emmel C; Hollinger DY; Krasnova A; Mammarella I; Noe SM; Ortiz PS; Rey-Sanchez AC; Rocha AV; Varlagin A
    Glob Chang Biol; 2018 Sep; 24(9):3990-4008. PubMed ID: 29733483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy.
    Rayment MB; Loustau D; Jarvis PJ
    Tree Physiol; 2002 Mar; 22(4):219-29. PubMed ID: 11874718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.].
    Way DA; Sage RF
    Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.
    Bigras FJ; Bertrand A
    Tree Physiol; 2006 Jul; 26(7):875-88. PubMed ID: 16585033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan.
    Ishii H; Kitaoka S; Fujisaki T; Maruyama Y; Koike T
    Tree Physiol; 2007 Nov; 27(11):1595-605. PubMed ID: 17669749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees.
    Dang QL; Margolis HA; Collatz GJ
    Tree Physiol; 1998 Mar; 18(3):141-153. PubMed ID: 12651384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data.
    Cui T; Wang Y; Sun R; Qiao C; Fan W; Jiang G; Hao L; Zhang L
    PLoS One; 2016; 11(4):e0153971. PubMed ID: 27088356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery.
    Danelichen VH; Biudes MS; Velasque MC; Machado NG; Gomes RS; Vourlitis GL; Nogueira JS
    An Acad Bras Cienc; 2015 Sep; 87(3):1545-64. PubMed ID: 26221990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana).
    Joanisse GD; Bradley RL; Preston CM; Bending GD
    New Phytol; 2009; 181(1):187-198. PubMed ID: 18811620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.
    Yang H; Yang X; Zhang Y; Heskel MA; Lu X; Munger JW; Sun S; Tang J
    Glob Chang Biol; 2017 Jul; 23(7):2874-2886. PubMed ID: 27976474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the frost sensitivity of black spruce photosynthesis during cold acclimation.
    Gaumont-Guay D; Margolis HA; Bigras FJ; Raulier F
    Tree Physiol; 2003 Apr; 23(5):301-11. PubMed ID: 12615545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: a growing season of whole-ecosystem exchange measurements by eddy correlation.
    Fan SM; Goulden ML; Munger JW; Daube BC; Bakwin PS; Wofsy SC; Amthor JS; Fitzjarrald DR; Moore KE; Moore TR
    Oecologia; 1995 Jun; 102(4):443-452. PubMed ID: 28306887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees.
    Jensen AM; Warren JM; Hanson PJ; Childs J; Wullschleger SD
    Ann Bot; 2015 Oct; 116(5):821-32. PubMed ID: 26220656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spread of Kalmia angustifolia on black spruce forest cutovers contributes to the spatial heterogeneity of soil resources.
    Joanisse GD; Bradley RL; Preston CM
    PLoS One; 2018; 13(6):e0198860. PubMed ID: 29927964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.