BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 15805107)

  • 1. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.
    Carpaneto A; Geiger D; Bamberg E; Sauer N; Fromm J; Hedrich R
    J Biol Chem; 2005 Jun; 280(22):21437-43. PubMed ID: 15805107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1.
    Carpaneto A; Koepsell H; Bamberg E; Hedrich R; Geiger D
    PLoS One; 2010 Sep; 5(9):e12605. PubMed ID: 20838661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading.
    Baker RF; Leach KA; Boyer NR; Swyers MJ; Benitez-Alfonso Y; Skopelitis T; Luo A; Sylvester A; Jackson D; Braun DM
    Plant Physiol; 2016 Nov; 172(3):1876-1898. PubMed ID: 27621426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources.
    Wittek A; Dreyer I; Al-Rasheid KAS; Sauer N; Hedrich R; Geiger D
    J Integr Plant Biol; 2017 Jun; 59(6):422-435. PubMed ID: 28296205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays.
    Philippar K; Büchsenschutz K; Abshagen M; Fuchs I; Geiger D; Lacombe B; Hedrich R
    J Biol Chem; 2003 May; 278(19):16973-81. PubMed ID: 12611901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1.
    Derrer C; Wittek A; Bamberg E; Carpaneto A; Dreyer I; Geiger D
    Plant Cell; 2013 Aug; 25(8):3010-21. PubMed ID: 23964025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves.
    Nieberl P; Ehrl C; Pommerrenig B; Graus D; Marten I; Jung B; Ludewig F; Koch W; Harms K; Flügge UI; Neuhaus HE; Hedrich R; Sauer N
    Plant Biol (Stuttg); 2017 May; 19(3):315-326. PubMed ID: 28075052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo transport of three radioactive [
    Tran TM; Hampton CS; Brossard TW; Harmata M; Robertson JD; Jurisson SS; Braun DM
    Plant Physiol Biochem; 2017 Jun; 115():1-11. PubMed ID: 28300727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays.
    Bezrutczyk M; Hartwig T; Horschman M; Char SN; Yang J; Yang B; Frommer WB; Sosso D
    New Phytol; 2018 Apr; 218(2):594-603. PubMed ID: 29451311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry.
    Kottra G; Daniel H
    J Physiol; 2001 Oct; 536(Pt 2):495-503. PubMed ID: 11600684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface?
    Wippel K; Wittek A; Hedrich R; Sauer N
    PLoS One; 2010 Aug; 5(8):e12429. PubMed ID: 20865151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose transport into plasma membrane vesicles from tobacco leaves by H+ symport or counter exchange does not display a linear component.
    Borstlap AC; Schuurmans JA
    J Membr Biol; 2004 Mar; 198(1):31-42. PubMed ID: 15209095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sucrose transporters of higher plants.
    Kühn C; Grof CP
    Curr Opin Plant Biol; 2010 Jun; 13(3):288-98. PubMed ID: 20303321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification.
    Krügel U; Veenhoff LM; Langbein J; Wiederhold E; Liesche J; Friedrich T; Grimm B; Martinoia E; Poolman B; Kühn C
    Plant Cell; 2008 Sep; 20(9):2497-513. PubMed ID: 18790827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation.
    Zakhartsev M; Medvedeva I; Orlov Y; Akberdin I; Krebs O; Schulze WX
    BMC Plant Biol; 2016 Dec; 16(1):262. PubMed ID: 28031032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes.
    Milne RJ; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CPL
    Plant Signal Behav; 2017 May; 12(5):e1319030. PubMed ID: 28426383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.).
    Aoki N; Hirose T; Takahashi S; Ono K; Ishimaru K; Ohsugi R
    Plant Cell Physiol; 1999 Oct; 40(10):1072-8. PubMed ID: 10589520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Senescence-induced expression of ZmSUT1 in cotton delays leaf senescence while the seed coat-specific expression increases yield.
    Ding X; Zeng J; Huang L; Li X; Song S; Pei Y
    Plant Cell Rep; 2019 Aug; 38(8):991-1000. PubMed ID: 31069498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.