BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15805167)

  • 1. Tryptophan substitution of a putative D4S6 gating hinge alters slow inactivation in cardiac sodium channels.
    Wang SY; Russell C; Wang GK
    Biophys J; 2005 Jun; 88(6):3991-9. PubMed ID: 15805167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent block and resurgent tail currents induced by mouse beta4(154-167) peptide in cardiac Na+ channels.
    Wang GK; Edrich T; Wang SY
    J Gen Physiol; 2006 Mar; 127(3):277-89. PubMed ID: 16505148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan scanning of D1S6 and D4S6 C-termini in voltage-gated sodium channels.
    Wang SY; Bonner K; Russell C; Wang GK
    Biophys J; 2003 Aug; 85(2):911-20. PubMed ID: 12885638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel.
    Wang SY; Tikhonov DB; Zhorov BS; Mitchell J; Wang GK
    Pflugers Arch; 2007 May; 454(2):277-87. PubMed ID: 17205354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4.
    Sheets MF; Kyle JW; Kallen RG; Hanck DA
    Biophys J; 1999 Aug; 77(2):747-57. PubMed ID: 10423423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6.
    Chancey JH; Shockett PE; O'Reilly JP
    Am J Physiol Cell Physiol; 2007 Dec; 293(6):C1895-905. PubMed ID: 17928536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversible block of cardiac mutant Na+ channels by batrachotoxin.
    Wang SY; Tikhonov DB; Mitchell J; Zhorov BS; Wang GK
    Channels (Austin); 2007; 1(3):179-88. PubMed ID: 18690024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na+ channel.
    O'Reilly JP; Shockett PE
    Biochem Biophys Res Commun; 2006 Jun; 345(1):59-66. PubMed ID: 16674915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule.
    Wang GK; Wang SY
    J Physiol; 2003 May; 548(Pt 3):667-75. PubMed ID: 12626674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channel activation voltage alone is directly altered in an isoform-specific manner by Na(v1.4) and Na(v1.5) cytoplasmic linkers.
    Bennett ES
    J Membr Biol; 2004 Feb; 197(3):155-68. PubMed ID: 15042347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels.
    Bennett ES
    Biophys J; 1999 Dec; 77(6):2999-3009. PubMed ID: 10585922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-dependent trapping of flecainide in the cardiac sodium channel.
    Ramos E; O'leary ME
    J Physiol; 2004 Oct; 560(Pt 1):37-49. PubMed ID: 15272045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.
    Sheets MF; Hanck DA
    J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM; Edgerton GB; Shah RD; Hanck DA; Fozzard HA; Lipkind GM
    J Physiol; 2007 Jun; 581(Pt 2):741-55. PubMed ID: 17363383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels.
    Gamel K; Torre V
    Biophys J; 2000 Nov; 79(5):2475-93. PubMed ID: 11053124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in segment I-S6 alters slow inactivation of sodium channels.
    Wang SY; Wang GK
    Biophys J; 1997 Apr; 72(4):1633-40. PubMed ID: 9083667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative charges in the DIII-DIV linker of human skeletal muscle Na+ channels regulate deactivation gating.
    Groome JR; Fujimoto E; Ruben PC
    J Physiol; 2003 Apr; 548(Pt 1):85-96. PubMed ID: 12588896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis.
    Wang SY; Mitchell J; Tikhonov DB; Zhorov BS; Wang GK
    Mol Pharmacol; 2006 Mar; 69(3):788-95. PubMed ID: 16354762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.