These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 15805538)
1. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. Rodrigue A; Effantin G; Mandrand-Berthelot MA J Bacteriol; 2005 Apr; 187(8):2912-6. PubMed ID: 15805538 [TBL] [Abstract][Full Text] [Related]
2. The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis. Koch D; Nies DH; Grass G Biometals; 2007 Oct; 20(5):759-71. PubMed ID: 17120142 [TBL] [Abstract][Full Text] [Related]
3. Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function. Iwig JS; Rowe JL; Chivers PT Mol Microbiol; 2006 Oct; 62(1):252-62. PubMed ID: 16956381 [TBL] [Abstract][Full Text] [Related]
4. The Escherichia coli metallo-regulator RcnR represses rcnA and rcnR transcription through binding on a shared operator site: Insights into regulatory specificity towards nickel and cobalt. Blaha D; Arous S; Blériot C; Dorel C; Mandrand-Berthelot MA; Rodrigue A Biochimie; 2011 Mar; 93(3):434-9. PubMed ID: 21040754 [TBL] [Abstract][Full Text] [Related]
5. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Freeman JL; Persans MW; Nieman K; Salt DE Appl Environ Microbiol; 2005 Dec; 71(12):8627-33. PubMed ID: 16332856 [TBL] [Abstract][Full Text] [Related]
6. High-level resistance to cobalt and nickel but probably no transenvelope efflux: Metal resistance in the Cuban Serratia marcescens strain C-1. Marrero J; Auling G; Coto O; Nies DH Microb Ecol; 2007 Jan; 53(1):123-33. PubMed ID: 17186148 [TBL] [Abstract][Full Text] [Related]
7. RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. Blériot C; Effantin G; Lagarde F; Mandrand-Berthelot MA; Rodrigue A J Bacteriol; 2011 Aug; 193(15):3785-93. PubMed ID: 21665978 [TBL] [Abstract][Full Text] [Related]
8. Isolation of a novel Thermus thermophilus metal efflux protein that improves Escherichia coli growth under stress conditions. Spada S; Pembroke JT; Wall JG Extremophiles; 2002 Aug; 6(4):301-8. PubMed ID: 12215815 [TBL] [Abstract][Full Text] [Related]
9. The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34. Mikolay A; Nies DH Antonie Van Leeuwenhoek; 2009 Aug; 96(2):183-91. PubMed ID: 19132541 [TBL] [Abstract][Full Text] [Related]
11. MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. Haritha A; Sagar KP; Tiwari A; Kiranmayi P; Rodrigue A; Mohan PM; Singh SS J Bacteriol; 2009 Oct; 191(19):5976-87. PubMed ID: 19648243 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial activity of 4,5-dihydroxy-2-cyclopentan-1-one (DHCP) and cloning of a gene conferring DHCP resistance in Escherichia coli. Phadtare S; Yamanaka K; Kato I; Inouye M J Mol Microbiol Biotechnol; 2001 Jul; 3(3):461-5. PubMed ID: 11361079 [TBL] [Abstract][Full Text] [Related]
13. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. Schmidt T; Schlegel HG J Bacteriol; 1994 Nov; 176(22):7045-54. PubMed ID: 7961470 [TBL] [Abstract][Full Text] [Related]
14. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Barras F; Fontecave M Metallomics; 2011 Nov; 3(11):1130-4. PubMed ID: 21952637 [TBL] [Abstract][Full Text] [Related]
15. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Nies DH Plasmid; 1992 Jan; 27(1):17-28. PubMed ID: 1741458 [TBL] [Abstract][Full Text] [Related]
16. [The cnr-like operon in strain Comamonas sp. encoding resistance to cobalt and nickel]. Siunova TV; Siunov AV; Kochetkov VV; Boronin AM Genetika; 2009 Mar; 45(3):336-41. PubMed ID: 19382684 [TBL] [Abstract][Full Text] [Related]
17. Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Kershaw CJ; Brown NL; Hobman JL Biochem Biophys Res Commun; 2007 Dec; 364(1):66-71. PubMed ID: 17931600 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria. Webb M Biochim Biophys Acta; 1970 Nov; 222(2):440-6. PubMed ID: 4992523 [No Abstract] [Full Text] [Related]
19. The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene. Potrykus J; Wegrzyn G Arch Microbiol; 2003 Nov; 180(5):362-6. PubMed ID: 14614545 [TBL] [Abstract][Full Text] [Related]
20. A genetic analysis of the response of Escherichia coli to cobalt stress. Fantino JR; Py B; Fontecave M; Barras F Environ Microbiol; 2010 Oct; 12(10):2846-57. PubMed ID: 20545747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]