These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 15806343)
1. A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli x Desi crosses: location of genes for resistance to fusarium wilt race 0. Cobos MJ; Fernández MJ; Rubio J; Kharrat M; Moreno MT; Gil J; Millán T Theor Appl Genet; 2005 May; 110(7):1347-53. PubMed ID: 15806343 [TBL] [Abstract][Full Text] [Related]
2. Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Iruela M; Rubio J; Barro F; Cubero JI; Millán T; Gil J Theor Appl Genet; 2006 Jan; 112(2):278-87. PubMed ID: 16328235 [TBL] [Abstract][Full Text] [Related]
4. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Flandez-Galvez H; Ades PK; Ford R; Pang EC; Taylor PW Theor Appl Genet; 2003 Nov; 107(7):1257-65. PubMed ID: 12928777 [TBL] [Abstract][Full Text] [Related]
5. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). Gaur R; Sethy NK; Choudhary S; Shokeen B; Gupta V; Bhatia S BMC Genomics; 2011 Feb; 12():117. PubMed ID: 21329497 [TBL] [Abstract][Full Text] [Related]
6. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Cho S; Chen W; Muehlbauer FJ Theor Appl Genet; 2004 Aug; 109(4):733-9. PubMed ID: 15146319 [TBL] [Abstract][Full Text] [Related]
7. Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. Jingade P; Ravikumar RL J Genet; 2015 Dec; 94(4):723-9. PubMed ID: 26690528 [TBL] [Abstract][Full Text] [Related]
8. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Radhika P; Gowda SJ; Kadoo NY; Mhase LB; Jamadagni BM; Sainani MN; Chandra S; Gupta VS Theor Appl Genet; 2007 Jul; 115(2):209-16. PubMed ID: 17503013 [TBL] [Abstract][Full Text] [Related]
9. Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Benko-Iseppon AM; Winter P; Huettel B; Staginnus C; Muehlbauer FJ; Kahl G Theor Appl Genet; 2003 Jul; 107(2):379-86. PubMed ID: 12709786 [TBL] [Abstract][Full Text] [Related]
10. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Collard BC; Pang EC; Ades PK; Taylor PW Theor Appl Genet; 2003 Aug; 107(4):719-29. PubMed ID: 12768241 [TBL] [Abstract][Full Text] [Related]
11. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Tar'an B; Warkentin TD; Tullu A; Vandenberg A Genome; 2007 Jan; 50(1):26-34. PubMed ID: 17546068 [TBL] [Abstract][Full Text] [Related]
12. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Jamalabadi JG; Saidi A; Karami E; Kharkesh M; Talebi R Biochem Genet; 2013 Jun; 51(5-6):387-97. PubMed ID: 23371372 [TBL] [Abstract][Full Text] [Related]
13. Development of chickpea near-isogenic lines for Fusarium wilt. Castro P; Pistón F; Madrid E; Millán T; Gil J; Rubio J Theor Appl Genet; 2010 Nov; 121(8):1519-26. PubMed ID: 20652529 [TBL] [Abstract][Full Text] [Related]
14. Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Palomino C; Fernández-Romero MD; Rubio J; Torres A; Moreno MT; Millán T Theor Appl Genet; 2009 Feb; 118(4):671-82. PubMed ID: 19034411 [TBL] [Abstract][Full Text] [Related]
15. Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration. Wang R; Gangola MP; Irvine C; Gaur PM; Båga M; Chibbar RN Theor Appl Genet; 2019 Apr; 132(4):1263-1281. PubMed ID: 30661107 [TBL] [Abstract][Full Text] [Related]
17. Fine mapping for double podding gene in chickpea. Ali L; Deokar A; Caballo C; Tar'an B; Gil J; Chen W; Millan T; Rubio J Theor Appl Genet; 2016 Jan; 129(1):77-86. PubMed ID: 26433827 [TBL] [Abstract][Full Text] [Related]
18. QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Daba K; Deokar A; Banniza S; Warkentin TD; Tar'an B Genome; 2016 Jun; 59(6):413-25. PubMed ID: 27244453 [TBL] [Abstract][Full Text] [Related]
19. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Tekeoglu M; Rajesh N; Muehlbauer J Theor Appl Genet; 2002 Nov; 105(6-7):847-854. PubMed ID: 12582909 [TBL] [Abstract][Full Text] [Related]
20. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Lichtenzveig J; Bonfil DJ; Zhang HB; Shtienberg D; Abbo S Theor Appl Genet; 2006 Nov; 113(7):1357-69. PubMed ID: 17016689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]