These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15806703)

  • 1. Microbial life in permafrost.
    Rivkina E; Laurinavichius K; McGrath J; Tiedje J; Shcherbakova V; Gilichinsky D
    Adv Space Res; 2004; 33(8):1215-21. PubMed ID: 15806703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term preservation of microbial ecosystems in permafrost.
    Gilichinsky DA; Vorobyova EA; Erokhina LG; Fyordorov-Davydov DG; Chaikovskaya NR; Fyordorov-Dayvdov DG
    Adv Space Res; 1992; 12(4):255-63. PubMed ID: 11538146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability.
    Blake LI; Tveit A; Øvreås L; Head IM; Gray ND
    PLoS One; 2015; 10(6):e0129733. PubMed ID: 26083466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost.
    Metje M; Frenzel P
    Environ Microbiol; 2007 Apr; 9(4):954-64. PubMed ID: 17359267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of cell structures in permafrost: a model for exobiology.
    Soina VS; Vorobiova EA; Zvyagintsev DG; Gilichinsky DA
    Adv Space Res; 1995 Mar; 15(3):237-42. PubMed ID: 11539231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme environments and exobiology.
    Friedmann EI
    Plant Biosyst; 1993; 127(3):369-76. PubMed ID: 11539430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.
    Negandhi K; Laurion I; Lovejoy C
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic activity of permafrost bacteria below the freezing point.
    Rivkina EM; Friedmann EI; McKay CP; Gilichinsky DA
    Appl Environ Microbiol; 2000 Aug; 66(8):3230-3. PubMed ID: 10919774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints.
    Ganzert L; Jurgens G; Münster U; Wagner D
    FEMS Microbiol Ecol; 2007 Feb; 59(2):476-88. PubMed ID: 16978241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska.
    Roy Chowdhury T; Herndon EM; Phelps TJ; Elias DA; Gu B; Liang L; Wullschleger SD; Graham DE
    Glob Chang Biol; 2015 Feb; 21(2):722-37. PubMed ID: 25308891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost.
    Ellenbogen JB; Borton MA; McGivern BB; Cronin DR; Hoyt DW; Freire-Zapata V; McCalley CK; Varner RK; Crill PM; Wehr RA; Chanton JP; Woodcroft BJ; Tfaily MM; Tyson GW; Rich VI; Wrighton KC
    mSystems; 2024 Jan; 9(1):e0069823. PubMed ID: 38063415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries.
    Nozhevnikova AN; Nekrasova V; Ammann A; Zehnder AJ; Wehrli B; Holliger C
    FEMS Microbiol Ecol; 2007 Dec; 62(3):336-44. PubMed ID: 17949433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial ecology and biodiversity in permafrost.
    Steven B; Léveillé R; Pollard WH; Whyte LG
    Extremophiles; 2006 Aug; 10(4):259-67. PubMed ID: 16550305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predominance of Anaerobic, Spore-Forming Bacteria in Metabolically Active Microbial Communities from Ancient Siberian Permafrost.
    Liang R; Lau M; Vishnivetskaya T; Lloyd KG; Wang W; Wiggins J; Miller J; Pfiffner S; Rivkina EM; Onstott TC
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.
    Lamarche-Gagnon G; Comery R; Greer CW; Whyte LG
    Extremophiles; 2015 Jan; 19(1):1-15. PubMed ID: 25381577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.
    Allan J; Ronholm J; Mykytczuk NC; Greer CW; Onstott TC; Whyte LG
    Environ Microbiol Rep; 2014 Apr; 6(2):136-44. PubMed ID: 24596286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Thermokarst Lakes in a Warming World.
    In 't Zandt MH; Liebner S; Welte CU
    Trends Microbiol; 2020 Sep; 28(9):769-779. PubMed ID: 32362540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic methanotrophic communities thrive in deep submarine permafrost.
    Winkel M; Mitzscherling J; Overduin PP; Horn F; Winterfeld M; Rijkers R; Grigoriev MN; Knoblauch C; Mangelsdorf K; Wagner D; Liebner S
    Sci Rep; 2018 Jan; 8(1):1291. PubMed ID: 29358665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.
    Koch K; Knoblauch C; Wagner D
    Environ Microbiol; 2009 Mar; 11(3):657-68. PubMed ID: 19278451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subzero microbiome: microbial activity in frozen and thawing soils.
    Nikrad MP; Kerkhof LJ; Häggblom MM
    FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw081. PubMed ID: 27106051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.