These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15808867)

  • 21. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A kinetic Monte Carlo simulation study of inositol 1,4,5-trisphosphate receptor (IP3R) calcium release channel.
    Haeri HH; Hashemianzadeh SM; Monajjemi M
    Comput Biol Chem; 2007 Apr; 31(2):99-109. PubMed ID: 17392027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidemic curve characteristics for the Reed-Frost model.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():67-75. PubMed ID: 2065179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
    Colizza V; Vespignani A
    J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Kermack-McKendrick model applied to an infectious disease in a natural population.
    Roberts MG
    IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bimodal epidemic size distributions for near-critical SIR with vaccination.
    Gordillo LF; Marion SA; Martin-Löf A; Greenwood PE
    Bull Math Biol; 2008 Feb; 70(2):589-602. PubMed ID: 17992563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A two-stage model for the SIR outbreak: accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage.
    Sazonov I; Kelbert M; Gravenor MB
    Math Biosci; 2011 Dec; 234(2):108-17. PubMed ID: 21968464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
    Griffith M; Courtney T; Peccoud J; Sanders WH
    Bioinformatics; 2006 Nov; 22(22):2782-9. PubMed ID: 16954141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical inference and model selection for the 1861 Hagelloch measles epidemic.
    Neal PJ; Roberts GO
    Biostatistics; 2004 Apr; 5(2):249-61. PubMed ID: 15054029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuum description of a contact infection spread in a SIR model.
    Postnikov EB; Sokolov IM
    Math Biosci; 2007 Jul; 208(1):205-15. PubMed ID: 17174353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling development of epidemics with dynamic small-world networks.
    Saramäki J; Kaski K
    J Theor Biol; 2005 Jun; 234(3):413-21. PubMed ID: 15784275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recurrent epidemics in small world networks.
    Verdasca J; Telo da Gama MM; Nunes A; Bernardino NR; Pacheco JM; Gomes MC
    J Theor Biol; 2005 Apr; 233(4):553-61. PubMed ID: 15748915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis and Monte Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations.
    Juher D; Ripoll J; Saldaña J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041920. PubMed ID: 19905355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the number of recovered individuals in the SIS and SIR stochastic epidemic models.
    Artalejo JR; Economou A; Lopez-Herrero MJ
    Math Biosci; 2010 Nov; 228(1):45-55. PubMed ID: 20801133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Illustration of some limits of the Markov assumption for transition between groups in models of spread of an infectious pathogen in a structured herd.
    Viet AF; Jacob C
    Theor Popul Biol; 2008 Aug; 74(1):93-103. PubMed ID: 18556035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic multitype epidemics in a community of households: estimation and form of optimal vaccination schemes.
    Ball F; Britton T; Lyne O
    Math Biosci; 2004 Sep; 191(1):19-40. PubMed ID: 15312742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.