These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15809279)

  • 1. High-affinity K+ uptake in pepper plants.
    Martínez-Cordero MA; Martínez V; Rubio F
    J Exp Bot; 2005 Jun; 56(416):1553-62. PubMed ID: 15809279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.
    Rubio F; Nieves-Cordones M; Alemán F; Martínez V
    Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.
    Martínez-Cordero MA; Martínez V; Rubio F
    Plant Mol Biol; 2004 Oct; 56(3):413-21. PubMed ID: 15604753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants.
    Schachtman DP; Schroeder JI
    Nature; 1994 Aug; 370(6491):655-8. PubMed ID: 8065452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems involved in K+ uptake from diluted solutions in pepper plants as revealed by the use of specific inhibitors.
    Rubio F; Arévalo L; Caballero F; Botella MA; Rubio JS; García-Sánchez F; Martínez V
    J Plant Physiol; 2010 Nov; 167(17):1494-9. PubMed ID: 20691498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport.
    Szczerba MW; Britto DT; Balkos KD; Kronzucker HJ
    J Exp Bot; 2008; 59(2):303-13. PubMed ID: 18203690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity sodium uptake in land plants.
    Haro R; Bañuelos MA; Rodríguez-Navarro A
    Plant Cell Physiol; 2010 Jan; 51(1):68-79. PubMed ID: 19939835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium.
    Spalding EP; Hirsch RE; Lewis DR; Qi Z; Sussman MR; Lewis BD
    J Gen Physiol; 1999 Jun; 113(6):909-18. PubMed ID: 10352038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-affinity potassium and sodium transport systems in plants.
    Rodríguez-Navarro A; Rubio F
    J Exp Bot; 2006; 57(5):1149-60. PubMed ID: 16449373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
    Gierth M; Mäser P
    FEBS Lett; 2007 May; 581(12):2348-56. PubMed ID: 17397836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP
    J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants.
    Takahashi R; Liu S; Takano T
    J Exp Bot; 2007; 58(15-16):4387-95. PubMed ID: 18182440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation currents in protoplasts from the roots of a Na+ hyperaccumulating mutant of Capsicum annuum.
    Murthy M; Tester M
    J Exp Bot; 2006; 57(5):1171-80. PubMed ID: 16510515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Cloning and Functional Analysis of a Na
    Ruiz-Lau N; Bojórquez-Quintal E; Benito B; Echevarría-Machado I; Sánchez-Cach LA; Medina-Lara MF; Martínez-Estévez M
    Front Plant Sci; 2016; 7():1980. PubMed ID: 28083010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.
    Loqué D; Yuan L; Kojima S; Gojon A; Wirth J; Gazzarrini S; Ishiyama K; Takahashi H; von Wirén N
    Plant J; 2006 Nov; 48(4):522-34. PubMed ID: 17026539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate supply affects ammonium transport in canola roots.
    Babourina O; Voltchanskii K; McGann B; Newman I; Rengel Z
    J Exp Bot; 2007; 58(3):651-8. PubMed ID: 17175549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences.
    ten Hoopen F; Cuin TA; Pedas P; Hegelund JN; Shabala S; Schjoerring JK; Jahn TP
    J Exp Bot; 2010 May; 61(9):2303-15. PubMed ID: 20339151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.).
    Yang Z; Gao Q; Sun C; Li W; Gu S; Xu C
    J Genet Genomics; 2009 Mar; 36(3):161-72. PubMed ID: 19302972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.