These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15809429)

  • 1. Linearized path integral approach for calculating nonadiabatic time correlation functions.
    Bonella S; Montemayor D; Coker DF
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6715-9. PubMed ID: 15809429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory.
    Mannouch JR; Richardson JO
    J Chem Phys; 2020 Nov; 153(19):194109. PubMed ID: 33218231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation.
    Ananth N; Venkataraman C; Miller WH
    J Chem Phys; 2007 Aug; 127(8):084114. PubMed ID: 17764236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact quantum statistics for electronically nonadiabatic systems using continuous path variables.
    Ananth N; Miller TF
    J Chem Phys; 2010 Dec; 133(23):234103. PubMed ID: 21186854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.
    Causo MS; Ciccotti G; Montemayor D; Bonella S; Coker DF
    J Phys Chem B; 2005 Apr; 109(14):6855-65. PubMed ID: 16851772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dynamics of complex molecular systems.
    Miller WH
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6660-4. PubMed ID: 15870209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and dynamic quantum effects in molecular liquids: a linearized path integral description of water.
    Poulsen JA; Nyman G; Rossky PJ
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6709-14. PubMed ID: 15860585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaginary-time open-chain path-integral approach for two-state time correlation functions and applications in charge transfer.
    Liu Z; Xu W; Tuckerman ME; Sun X
    J Chem Phys; 2022 Sep; 157(11):114111. PubMed ID: 36137799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches.
    Mannouch JR; Richardson JO
    J Chem Phys; 2020 Nov; 153(19):194110. PubMed ID: 33218246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative linearized approach to nonadiabatic dynamics.
    Dunkel ER; Bonella S; Coker DF
    J Chem Phys; 2008 Sep; 129(11):114106. PubMed ID: 19044949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer with Realistic Environment Interactions.
    Lee MK; Huo P; Coker DF
    Annu Rev Phys Chem; 2016 May; 67():639-68. PubMed ID: 27090842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anharmonic oscillation effect on the Davydov-Scott monomer in a thermal bath.
    Sulaiman A; Zen FP; Alatas H; Handoko LT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061907. PubMed ID: 20866440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism.
    Bonella S; Coker DF
    J Chem Phys; 2005 May; 122(19):194102. PubMed ID: 16161558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.
    Cendagorta JR; Bačić Z; Tuckerman ME
    J Chem Phys; 2018 Mar; 148(10):102340. PubMed ID: 29544313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics.
    Mulvihill E; Gao X; Liu Y; Schubert A; Dunietz BD; Geva E
    J Chem Phys; 2019 Aug; 151(7):074103. PubMed ID: 31438690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution.
    Huo P; Coker DF
    J Chem Phys; 2011 Nov; 135(20):201101. PubMed ID: 22128918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.
    Hele TJ; Ananth N
    Faraday Discuss; 2016 Dec; 195():269-289. PubMed ID: 27752681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic dynamics in open quantum-classical systems: forward-backward trajectory solution.
    Hsieh CY; Kapral R
    J Chem Phys; 2012 Dec; 137(22):22A507. PubMed ID: 23249044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying kinetic paths of protein folding.
    Wang J; Zhang K; Lu H; Wang E
    Biophys J; 2005 Sep; 89(3):1612-20. PubMed ID: 15994895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path Integrals for Nonadiabatic Dynamics: Multistate Ring Polymer Molecular Dynamics.
    Ananth N
    Annu Rev Phys Chem; 2022 Apr; 73():299-322. PubMed ID: 35081325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.