These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15809786)

  • 21. Suction-fixing surgical device for assisting liver manipulation with laparoscopic forceps.
    Nakajima Y; Suzuki R; Suzuki Y; Sugino T; Kawase T; Onogi S; Seki H; Fujiwara T; Ouchi K
    Int J Comput Assist Radiol Surg; 2020 Oct; 15(10):1653-1664. PubMed ID: 32734313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery.
    Mirbagheri A; Farahmand F
    Int J Med Robot; 2013 Mar; 9(1):83-93. PubMed ID: 22576714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of friction and load on pinch force in a hand transfer task.
    Frederick LJ; Armstrong TJ
    Ergonomics; 1995 Dec; 38(12):2447-54. PubMed ID: 8586074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A randomized comparison of a new flexible bipolar hemostasis forceps designed principally for NOTES versus a conventional surgical laparoscopic bipolar forceps for intra-abdominal vessel sealing in a porcine model.
    Park PO; Long GL; Bergström M; Cunningham C; Vakharia OJ; Bakos GJ; Bally KR; Rothstein RI; Swain CP
    Gastrointest Endosc; 2010 Apr; 71(4):835-41. PubMed ID: 19942215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Performance of a Low-Cost Telemetric Laparoscopic Tactile Grasper.
    Schostek S; Zimmermann M; Schurr MO; Prosst RL
    Surg Innov; 2016 Jun; 23(3):291-7. PubMed ID: 26546367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and fluid flow simulation of modified laparoscopic forceps.
    Junaidi MAR; Kalluri RCM; Rao YVD; Gokhale AGK; Patel A
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):844-863. PubMed ID: 33305607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of handle design and target location on insertion and aim with a laparoscopic surgical tool.
    Trejo A; Jung MC; Oleynikov D; Hallbeck MS
    Appl Ergon; 2007 Nov; 38(6):745-53. PubMed ID: 17374356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of laparoscopic dissectors. What can you feel?
    den Boer KT; Herder JL; Sjoerdsma W; Meijer DW; Gouma DJ; Stassen HG
    Surg Endosc; 1999 Sep; 13(9):869-73. PubMed ID: 10449841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to reduce the risk of organ injuries during surgical instrument insertion in laparoscopic surgery: Pushing/pressing force analysis using forceps with sensors.
    Makiyama K; Osaka K; Araki A; Ohtake S; Tatenuma T; Nagasaka M; Yamada T; Yao M
    Asian J Endosc Surg; 2021 Jul; 14(3):504-510. PubMed ID: 33258261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of interaction between a three-fingered surgical grasper and human spleen.
    Tirehdast M; Mirbagheri A; Asghari M; Farahmand F
    Stud Health Technol Inform; 2011; 163():663-9. PubMed ID: 21335876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tactile feedback exceeds visual feedback to display tissue slippage in a laparoscopic grasper.
    Westebring-van der Putten EP; Lysen WW; Henssen VD; Koopmans N; Goossens RH; van den Dobbelsteen JJ; Dankelman J; Jakimowcz J
    Stud Health Technol Inform; 2009; 142():420-5. PubMed ID: 19377198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental evaluation of the fineness of needle forceps: advantages other than minimal access.
    Doden K; Inaki N; Tsuji T
    Surg Today; 2021 Jul; 51(7):1220-1226. PubMed ID: 33426624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vivo analysis of safe laparoscopic grasping thresholds for colorectal surgery.
    Barrie J; Russell L; Hood AJ; Jayne DG; Neville A; Culmer PR
    Surg Endosc; 2018 Oct; 32(10):4244-4250. PubMed ID: 29602989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Friction Minilaparoscopy Outperforms Regular 5-mm and 3-mm Instruments for Precise Tasks.
    Firme WA; Carvalho GL; Lima DL; Lopes VG; Montandon ID; Santos Filho F; Shadduck PP
    JSLS; 2015; 19(3):. PubMed ID: 26390530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical evaluation of three access devices for laparoendoscopic single-site surgery.
    Xie XF; Zhu JF; Song CL; Zhang DS; Zou QL
    J Surg Res; 2013 Dec; 185(2):638-44. PubMed ID: 23941767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multipronged laparoscopic forceps.
    Hasson HM
    J Reprod Med; 1976 Apr; 16(4):167-70. PubMed ID: 131193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of key pinch forces required to complete functional tasks.
    Smaby N; Johanson ME; Baker B; Kenney DE; Murray WM; Hentz VR
    J Rehabil Res Dev; 2004 Mar; 41(2):215-24. PubMed ID: 15558375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a laparoscopic grasper with force feedback.
    Hu T; Tholey G; Desai JP; Castellanos AE
    Surg Endosc; 2004 May; 18(5):863-7. PubMed ID: 15054651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.