These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 15809861)
1. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Miller G; Stein H; Honig A; Kapulnik Y; Zilberstein A Planta; 2005 Sep; 222(1):70-9. PubMed ID: 15809861 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Ginzberg I; Stein H; Kapulnik Y; Szabados L; Strizhov N; Schell J; Koncz C; Zilberstein A Plant Mol Biol; 1998 Nov; 38(5):755-64. PubMed ID: 9862493 [TBL] [Abstract][Full Text] [Related]
3. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Abrahám E; Rigó G; Székely G; Nagy R; Koncz C; Szabados L Plant Mol Biol; 2003 Feb; 51(3):363-72. PubMed ID: 12602867 [TBL] [Abstract][Full Text] [Related]
4. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Zhang M; Huang H; Dai S Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369 [TBL] [Abstract][Full Text] [Related]
5. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Peng Z; Lu Q; Verma DP Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940 [TBL] [Abstract][Full Text] [Related]
7. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Deutch CE; Winicov I Plant Mol Biol; 1995 Jan; 27(2):411-8. PubMed ID: 7888629 [TBL] [Abstract][Full Text] [Related]
8. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. Dobrá J; Vanková R; Havlová M; Burman AJ; Libus J; Storchová H J Plant Physiol; 2011 Sep; 168(13):1588-97. PubMed ID: 21481968 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatics and expression analysis of proline metabolism-related gene families in alfalfa under saline-alkali stress. Min Y; Yu D; Yang J; Zhao W; Zhang L; Bai Y; Guo C Plant Physiol Biochem; 2023 Dec; 205():108182. PubMed ID: 37977024 [TBL] [Abstract][Full Text] [Related]
10. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803 [TBL] [Abstract][Full Text] [Related]
11. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Bastola DR; Pethe VV; Winicov I Plant Mol Biol; 1998 Dec; 38(6):1123-35. PubMed ID: 9869418 [TBL] [Abstract][Full Text] [Related]
12. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. Xue X; Liu A; Hua X BMB Rep; 2009 Jan; 42(1):28-34. PubMed ID: 19192390 [TBL] [Abstract][Full Text] [Related]
13. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Ishitani M; Nakamura T; Han SY; Takabe T Plant Mol Biol; 1995 Jan; 27(2):307-15. PubMed ID: 7888620 [TBL] [Abstract][Full Text] [Related]
14. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Nakashima K; Satoh R; Kiyosue T; Yamaguchi-Shinozaki K; Shinozaki K Plant Physiol; 1998 Dec; 118(4):1233-41. PubMed ID: 9847097 [TBL] [Abstract][Full Text] [Related]
15. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Moons A; De Keyser A; Van Montagu M Gene; 1997 Jun; 191(2):197-204. PubMed ID: 9218720 [TBL] [Abstract][Full Text] [Related]
16. Isolation of the P5CS gene from reed canary grass and its expression under salt stress. Cong LL; Zhang XQ; Yang FY; Liu SJ; Zhang YW Genet Mol Res; 2014 Oct; 13(4):9122-33. PubMed ID: 25366804 [TBL] [Abstract][Full Text] [Related]
17. A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Coba de la Peña T; Cárcamo CB; Almonacid L; Zaballos A; Lucas MM; Balomenos D; Pueyo JJ Planta; 2008 Mar; 227(4):769-79. PubMed ID: 17985155 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Sharma S; Verslues PE Plant Cell Environ; 2010 Nov; 33(11):1838-51. PubMed ID: 20545884 [TBL] [Abstract][Full Text] [Related]
19. Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa. Tóth EC; Vissi E; Kovács I; Szöke A; Ariño J; Gergely P; Dudits D; Dombrádi V Plant Mol Biol; 2000 Jul; 43(4):527-36. PubMed ID: 11052204 [TBL] [Abstract][Full Text] [Related]
20. Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula. Long R; Zhang F; Li Z; Li M; Cong L; Kang J; Zhang T; Zhao Z; Sun Y; Yang Q J Plant Res; 2015 Jul; 128(4):697-707. PubMed ID: 25801273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]