BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 15809861)

  • 1. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation.
    Miller G; Stein H; Honig A; Kapulnik Y; Zilberstein A
    Planta; 2005 Sep; 222(1):70-9. PubMed ID: 15809861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress.
    Ginzberg I; Stein H; Kapulnik Y; Szabados L; Strizhov N; Schell J; Koncz C; Zilberstein A
    Plant Mol Biol; 1998 Nov; 38(5):755-64. PubMed ID: 9862493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis.
    Abrahám E; Rigó G; Székely G; Nagy R; Koncz C; Szabados L
    Plant Mol Biol; 2003 Feb; 51(3):363-72. PubMed ID: 12602867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants.
    Peng Z; Lu Q; Verma DP
    Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.
    Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J
    BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein.
    Deutch CE; Winicov I
    Plant Mol Biol; 1995 Jan; 27(2):411-8. PubMed ID: 7888629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery.
    Dobrá J; Vanková R; Havlová M; Burman AJ; Libus J; Storchová H
    J Plant Physiol; 2011 Sep; 168(13):1588-97. PubMed ID: 21481968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics and expression analysis of proline metabolism-related gene families in alfalfa under saline-alkali stress.
    Min Y; Yu D; Yang J; Zhao W; Zhang L; Bai Y; Guo C
    Plant Physiol Biochem; 2023 Dec; 205():108182. PubMed ID: 37977024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene.
    Bastola DR; Pethe VV; Winicov I
    Plant Mol Biol; 1998 Dec; 38(6):1123-35. PubMed ID: 9869418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus.
    Xue X; Liu A; Hua X
    BMB Rep; 2009 Jan; 42(1):28-34. PubMed ID: 19192390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.
    Ishitani M; Nakamura T; Han SY; Takabe T
    Plant Mol Biol; 1995 Jan; 27(2):307-15. PubMed ID: 7888620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis.
    Nakashima K; Satoh R; Kiyosue T; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Physiol; 1998 Dec; 118(4):1233-41. PubMed ID: 9847097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response.
    Moons A; De Keyser A; Van Montagu M
    Gene; 1997 Jun; 191(2):197-204. PubMed ID: 9218720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of the P5CS gene from reed canary grass and its expression under salt stress.
    Cong LL; Zhang XQ; Yang FY; Liu SJ; Zhang YW
    Genet Mol Res; 2014 Oct; 13(4):9122-33. PubMed ID: 25366804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules.
    Coba de la Peña T; Cárcamo CB; Almonacid L; Zaballos A; Lucas MM; Balomenos D; Pueyo JJ
    Planta; 2008 Mar; 227(4):769-79. PubMed ID: 17985155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.
    Sharma S; Verslues PE
    Plant Cell Environ; 2010 Nov; 33(11):1838-51. PubMed ID: 20545884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa.
    Tóth EC; Vissi E; Kovács I; Szöke A; Ariño J; Gergely P; Dudits D; Dombrádi V
    Plant Mol Biol; 2000 Jul; 43(4):527-36. PubMed ID: 11052204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula.
    Long R; Zhang F; Li Z; Li M; Cong L; Kang J; Zhang T; Zhao Z; Sun Y; Yang Q
    J Plant Res; 2015 Jul; 128(4):697-707. PubMed ID: 25801273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.