These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species. Avolio ML; Tuininga AR; Lewis JD; Marchese M Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124 [TBL] [Abstract][Full Text] [Related]
3. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. Hazard C; Kruitbos L; Davidson H; Taylor AF; Johnson D New Phytol; 2017 Jan; 213(2):852-863. PubMed ID: 27636558 [TBL] [Abstract][Full Text] [Related]
4. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Fomina M; Charnock JM; Hillier S; Alexander IJ; Gadd GM Microb Ecol; 2006 Aug; 52(2):322-33. PubMed ID: 16710792 [TBL] [Abstract][Full Text] [Related]
5. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Ali MA; Louche J; Legname E; Duchemin M; Plassard C Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995 [TBL] [Abstract][Full Text] [Related]
6. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Holste EK; Kobe RK; Gehring CA Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856 [TBL] [Abstract][Full Text] [Related]
7. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Ahonen-Jonnarth U; Göransson A; Finlay RD Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266 [TBL] [Abstract][Full Text] [Related]
8. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. Baxter JW; Dighton J New Phytol; 2001 Oct; 152(1):139-149. PubMed ID: 35974479 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. Torres Aquino M; Plassard C FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398 [TBL] [Abstract][Full Text] [Related]
10. Structure and species composition of ectomycorrhizal fungal communities colonizing seedlings and adult trees of Pinus montezumae in Mexican neotropical forests. Reverchon F; Ortega-Larrocea Mdel P; Bonilla-Rosso G; Pérez-Moreno J FEMS Microbiol Ecol; 2012 May; 80(2):479-87. PubMed ID: 22283841 [TBL] [Abstract][Full Text] [Related]
11. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
12. Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. Mucha J; Peay KG; Smith DP; Reich PB; Stefański A; Hobbie SE Microb Ecol; 2018 Feb; 75(2):348-363. PubMed ID: 28741266 [TBL] [Abstract][Full Text] [Related]
13. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Alvarez M; Huygens D; Olivares E; Saavedra I; Alberdi M; Valenzuela E Physiol Plant; 2009 Aug; 136(4):426-36. PubMed ID: 19470091 [TBL] [Abstract][Full Text] [Related]
14. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Chen Y; Nara K; Wen Z; Shi L; Xia Y; Shen Z; Lian C Mycorrhiza; 2015 Oct; 25(7):561-71. PubMed ID: 25720735 [TBL] [Abstract][Full Text] [Related]
15. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Nguyen NH; Williams LJ; Vincent JB; Stefanski A; Cavender-Bares J; Messier C; Paquette A; Gravel D; Reich PB; Kennedy PG Mol Ecol; 2016 Aug; 25(16):4032-46. PubMed ID: 27284759 [TBL] [Abstract][Full Text] [Related]
16. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Fransson PM; Taylor AF; Finlay RD Mycorrhiza; 2005 Jan; 15(1):25-31. PubMed ID: 14750001 [TBL] [Abstract][Full Text] [Related]
17. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant. Garcia K; Delteil A; Conéjéro G; Becquer A; Plassard C; Sentenac H; Zimmermann S New Phytol; 2014 Feb; 201(3):951-960. PubMed ID: 24279702 [TBL] [Abstract][Full Text] [Related]
18. Elevated CO and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. Fransson PM; Johansson EM FEMS Microbiol Ecol; 2010 Feb; 71(2):186-96. PubMed ID: 19889031 [TBL] [Abstract][Full Text] [Related]
19. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Valdés M; Asbjornsen H; Gómez-Cárdenas M; Juárez M; Vogt KA Mycorrhiza; 2006 Mar; 16(2):117-124. PubMed ID: 16322986 [TBL] [Abstract][Full Text] [Related]
20. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Wallander H; Fossum A; Rosengren U; Jones H Mycorrhiza; 2005 Mar; 15(2):143-8. PubMed ID: 15221578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]