These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 1581002)

  • 21. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR.
    Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M
    Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen.
    Chang Y; Mochalkin I; McCance SG; Cheng B; Tulinsky A; Castellino FJ
    Biochemistry; 1998 Mar; 37(10):3258-71. PubMed ID: 9521645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic Acid.
    Mathews II; Vanderhoff-Hanaver P; Castellino FJ; Tulinsky A
    Biochemistry; 1996 Feb; 35(8):2567-76. PubMed ID: 8611560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epitope mapping of the anti-urokinase monoclonal antibody 5B4 by isolated domains of urokinase.
    Corti A; Sarubbi E; Soffientini A; Nolli ML; Zanni A; Galimberti M; Parenti F; Cassani G
    Thromb Haemost; 1989 Nov; 62(3):934-9. PubMed ID: 2480654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin.
    Arni RK; Padmanabhan K; Padmanabhan KP; Wu TP; Tulinsky A
    Biochemistry; 1993 May; 32(18):4727-37. PubMed ID: 8387813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct identification of lysine-33 as the principal cationic center of the omega-amino acid binding site of the recombinant kringle 2 domain of tissue-type plasminogen activator.
    De Serrano VS; Sehl LC; Castellino FJ
    Arch Biochem Biophys; 1992 Jan; 292(1):206-12. PubMed ID: 1309292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational design of complex formation between plasminogen activator inhibitor-1 and its target proteinases.
    Aertgeerts K; De Ranter CJ; Booth NA; Declerck PJ
    J Struct Biol; 1997 Apr; 118(3):236-42. PubMed ID: 9169233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of urokinase plasminogen activator to gp130 via a putative urokinase-binding consensus sequence.
    Liang OD; Chavakis T; Linder M; Bdeir K; Kuo A; Preissner KT
    Biol Chem; 2003 Feb; 384(2):229-36. PubMed ID: 12675515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heparin binding to the urokinase kringle domain.
    Stephens RW; Bokman AM; Myöhänen HT; Reisberg T; Tapiovaara H; Pedersen N; Grøndahl-Hansen J; Llinás M; Vaheri A
    Biochemistry; 1992 Aug; 31(33):7572-9. PubMed ID: 1510944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homology of kringle structures in urokinase and tissue-type plasminogen activator: the phylogeny with the related serine proteases.
    Takahashi K; Gojobori T; Naora H
    Cell Struct Funct; 1985 Sep; 10(3):209-18. PubMed ID: 3930078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kringle-kringle interactions in multimer kringle structures.
    Padmanabhan K; Wu TP; Ravichandran KG; Tulinsky A
    Protein Sci; 1994 Jun; 3(6):898-910. PubMed ID: 8069221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kringle-specific monoclonal antibody.
    Church WR; Messier TL; Ouellette LA; Potts SE
    Hybridoma; 1994 Oct; 13(5):423-9. PubMed ID: 7860098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in gene expression of kringle domain-containing proteins in murine brains and neuroblastoma cells infected by prions.
    Kim Y; Song J; Mays CE; Titlow W; Yoon D; Ryou C
    Mol Cell Biochem; 2009 Aug; 328(1-2):177-82. PubMed ID: 19322640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the non-covalent complex of prothrombin kringle 2 with PPACK-thrombin.
    Arni RK; Padmanabhan K; Padmanabhan KP; Wu TP; Tulinsky A
    Chem Phys Lipids; 1994 Jan; 67-68():59-66. PubMed ID: 8187245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.
    Patthy L; Trexler M; Váli Z; Bányai L; Váradi A
    FEBS Lett; 1984 Jun; 171(1):131-6. PubMed ID: 6373375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2.4-A resolution.
    de Vos AM; Ultsch MH; Kelley RF; Padmanabhan K; Tulinsky A; Westbrook ML; Kossiakoff AA
    Biochemistry; 1992 Jan; 31(1):270-9. PubMed ID: 1310033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of recombinant plasminogen kringle 1 and the fibrin binding site.
    Wu TP; Padmanabhan KP; Tulinsky A
    Blood Coagul Fibrinolysis; 1994 Apr; 5(2):157-66. PubMed ID: 8054447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different evolutionary histories of kringle and protease domains in serine proteases: a typical example of domain evolution.
    Ikeo K; Takahashi K; Gojobori T
    J Mol Evol; 1995 Mar; 40(3):331-6. PubMed ID: 7723060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kringle-2 domain of the tissue-type plasminogen activator. 1H-NMR assignments and secondary structure.
    Byeon IJ; Kelley RF; Llinás M
    Eur J Biochem; 1991 Apr; 197(1):155-65. PubMed ID: 1901789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequential 1H NMR assignments and secondary structure of the kringle domain from urokinase.
    Li X; Smith RA; Dobson CM
    Biochemistry; 1992 Oct; 31(40):9562-71. PubMed ID: 1327118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.