These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15810237)

  • 1. [Simple formulae for the calculation of Li-like and Be-like ionic energies of ground states].
    Xu Z; Gao Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 1997 Dec; 17(6):10-4. PubMed ID: 15810237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study.
    Kouri DJ; Markovich T; Maxwell N; Bittner ER
    J Phys Chem A; 2009 Dec; 113(52):15257-64. PubMed ID: 19863127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation energies from ground-state density-functionals by means of generator coordinates.
    Orestes E; da Silva AB; Capelle K
    Phys Chem Chem Phys; 2009 Jun; 11(22):4564-9. PubMed ID: 19475176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-consistent field calculations of excited states using the maximum overlap method (MOM).
    Gilbert AT; Besley NA; Gill PM
    J Phys Chem A; 2008 Dec; 112(50):13164-71. PubMed ID: 18729344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver.
    Nakata M; Braams BJ; Fujisawa K; Fukuda M; Percus JK; Yamashita M; Zhao Z
    J Chem Phys; 2008 Apr; 128(16):164113. PubMed ID: 18447427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. I. Transformed reference via an intermediate configuration Kohn-Sham density-functional theory and applications to d1 and d2 systems with octahedral and tetrahedral symmetries.
    Seth M; Ziegler T
    J Chem Phys; 2005 Oct; 123(14):144105. PubMed ID: 16238372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Monte Carlo ground state energies for the atoms Li through Ar.
    Buendía E; Gálvez FJ; Maldonado P; Sarsa A
    J Chem Phys; 2009 Jul; 131(4):044115. PubMed ID: 19655845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic excited-state energies from a linear response theory based on the ground-state two-electron reduced density matrix.
    Greenman L; Mazziotti DA
    J Chem Phys; 2008 Mar; 128(11):114109. PubMed ID: 18361556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized effective potential method for individual low-lying excited states.
    Glushkov VN; Levy M
    J Chem Phys; 2007 May; 126(17):174106. PubMed ID: 17492856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and localization of a solvated electron in ground and low-lying excited states of Li(NH3)n and Li(H2O)n clusters: a comparison with Na(NH3)n and Na(H2O)n.
    Hashimoto K; Daigoku K
    Phys Chem Chem Phys; 2009 Nov; 11(41):9391-400. PubMed ID: 19830322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation theory corrections to the two-particle reduced density matrix variational method.
    Juhasz T; Mazziotti DA
    J Chem Phys; 2004 Jul; 121(3):1201-5. PubMed ID: 15260661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for calculating bound states: the A(1) states of Li(3) on the spin-aligned Li(3)(1 (4)A(')) potential energy surface.
    Li X; Brue DA; Parker GA
    J Chem Phys; 2007 Jul; 127(1):014108. PubMed ID: 17627338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground electronic states of RbO2+, CsO2+ and FrO2: the ionization energies of RbO2 and CsO2.
    Lee EP; Wright TG
    J Phys Chem A; 2005 Apr; 109(14):3257-61. PubMed ID: 16833657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electronic spectrum of the fluoroborane free radical. I. Theoretical calculation of the vibronic energy levels of the ground and first excited electronic states.
    Sunahori FX; Clouthier DJ; Carter S; Tarroni R
    J Chem Phys; 2009 Apr; 130(16):164309. PubMed ID: 19405581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization and validation of solvation corrected atomic radii.
    Zuo CS; Wiest O; Wu YD
    J Phys Chem A; 2009 Oct; 113(43):12028-34. PubMed ID: 19719098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties.
    Kongsted J; Christiansen O
    J Chem Phys; 2006 Sep; 125(12):124108. PubMed ID: 17014167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic effects for the ground 1 1S(L=0) states in the light two-electron ions.
    Frolov AM
    J Chem Phys; 2006 Jun; 124(22):224323. PubMed ID: 16784290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium ionic jump motion in the fast solid ion conductor Li(5)La(3)Nb(2)O(12).
    Koch B; Vogel M
    Solid State Nucl Magn Reson; 2008; 34(1-2):37-43. PubMed ID: 18406110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic limiting molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.
    He X; Pu W; Han J; Chen J; Lu J; Jiang C; Wan C
    J Phys Chem B; 2005 Dec; 109(49):23141-4. PubMed ID: 16375275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate quantum calculation of the bound and resonant rovibrational states of Li-(H2).
    Xiao Y; Poirier B
    J Chem Phys; 2005 Mar; 122(12):124318. PubMed ID: 15836389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.