BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15810333)

  • 21. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.
    Hur J; Park SW; Kim MC; Kim HS
    Chemosphere; 2013 Nov; 93(11):2704-10. PubMed ID: 24050718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Part IV-sorption of hydrophobic organic contaminants.
    Pan B; Ning P; Xing B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):554-64. PubMed ID: 18923860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the chemical composition of water-extractable organic matter during composting: distribution between stable and labile organic matter pools.
    Said-Pullicino D; Kaiser K; Guggenberger G; Gigliotti G
    Chemosphere; 2007 Feb; 66(11):2166-76. PubMed ID: 17125814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [An overview on studies of soil organic matter in Chinese fir plantation].
    Wang Q; Wang S; Feng Z; Deng S; Gao H
    Ying Yong Sheng Tai Xue Bao; 2004 Oct; 15(10):1947-52. PubMed ID: 15624842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.
    Pu X; Cutright TJ
    Chemosphere; 2006 Aug; 64(6):972-83. PubMed ID: 16473390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy.
    Xu S; Shi X; Wang M; Zhao Y
    PLoS One; 2016; 11(3):e0151536. PubMed ID: 26974821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparative study of humic acids of muds and peat by the methods of electron paramagnetic resonance and infrared spectroscopy].
    Efendieva FM; Bogdanov GN; Shykhov MA; Khalil-zade VK; Medzhidov AA
    Vopr Kurortol Fizioter Lech Fiz Kult; 1985; (4):45-8. PubMed ID: 2998079
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of soils using photoacoustic mid-infrared spectroscopy.
    Changwen D; Linker R; Shaviv A
    Appl Spectrosc; 2007 Oct; 61(10):1063-7. PubMed ID: 17958956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues.
    Gholizadeh A; Borůvka L; Saberioon M; Vašát R
    Appl Spectrosc; 2013 Dec; 67(12):1349-62. PubMed ID: 24359647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils.
    Yang Y; Zhang N; Xue M; Tao S
    Environ Pollut; 2010 Jun; 158(6):2170-4. PubMed ID: 20347196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption of nitroaromatics to soils: comparison of the importance of soil organic matter versus clay.
    Zhang D; Zhu D; Chen W
    Environ Toxicol Chem; 2009 Jul; 28(7):1447-54. PubMed ID: 19236125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A near-infrared spectral index for estimating soil organic matter content].
    Zhang JJ; Tian YC; Zhu Y; Yao X; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):1896-904. PubMed ID: 19947209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene.
    Singh N; Berns AE; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Hazard Mater; 2010 Jan; 173(1-3):343-8. PubMed ID: 19748732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular-level methods for monitoring soil organic matter responses to global climate change.
    Feng X; Simpson MJ
    J Environ Monit; 2011 May; 13(5):1246-54. PubMed ID: 21416081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting.
    Francou C; Linères M; Derenne S; Villio-Poitrenaud ML; Houot S
    Bioresour Technol; 2008 Dec; 99(18):8926-34. PubMed ID: 18550366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of shelterbelt on two kinds of soils on the transformation of organic matter.
    Szajdak L; Maryganova V; Meysner T; Tychinskaja L
    Environ Int; 2002 Nov; 28(5):383-92. PubMed ID: 12437288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vienna soil organic matter modeler 2 (VSOMM2).
    Escalona Y; Petrov D; Oostenbrink C
    J Mol Graph Model; 2021 Mar; 103():107817. PubMed ID: 33291027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term effect of sewage sludge application on soil humic acids.
    Adani F; Tambone F
    Chemosphere; 2005 Sep; 60(9):1214-21. PubMed ID: 16018891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain).
    Ottenhof CJ; Faz Cano A; Arocena JM; Nierop KG; Verstraten JM; van Mourik JM
    Chemosphere; 2007 Nov; 69(9):1341-50. PubMed ID: 17655914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.
    Tfaily MM; Chu RK; Tolić N; Roscioli KM; Anderton CR; Paša-Tolić L; Robinson EW; Hess NJ
    Anal Chem; 2015; 87(10):5206-15. PubMed ID: 25884232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.