These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15810655)

  • 21. [Non-photic entrainment of human circadian clock--effects of forced sleep-wake schedule on the circadian rhythm in plasma melatonin].
    Nakamura K
    Hokkaido Igaku Zasshi; 1996 May; 71(3):403-22. PubMed ID: 8752534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle.
    Tagliazucchi E; von Wegner F; Morzelewski A; Brodbeck V; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2013 Apr; 70():327-39. PubMed ID: 23313420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cognition in circadian rhythm sleep disorders.
    Reid KJ; McGee-Koch LL; Zee PC
    Prog Brain Res; 2011; 190():3-20. PubMed ID: 21531242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research.
    Lachaux JP; Axmacher N; Mormann F; Halgren E; Crone NE
    Prog Neurobiol; 2012 Sep; 98(3):279-301. PubMed ID: 22750156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain functional connectivity and the pathophysiology of schizophrenia.
    Angelopoulos E
    Psychiatriki; 2014; 25(2):91-4. PubMed ID: 25035177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the brain's default mode network from wakefulness to slow wave sleep.
    Sämann PG; Wehrle R; Hoehn D; Spoormaker VI; Peters H; Tully C; Holsboer F; Czisch M
    Cereb Cortex; 2011 Sep; 21(9):2082-93. PubMed ID: 21330468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graph properties of synchronized cortical networks during visual working memory maintenance.
    Palva S; Monto S; Palva JM
    Neuroimage; 2010 Feb; 49(4):3257-68. PubMed ID: 19932756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel object presentation affects sleep-wake behavior in rats.
    Schiffelholz T; Aldenhoff JB
    Neurosci Lett; 2002 Aug; 328(1):41-4. PubMed ID: 12123855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation.
    Totty MS; Chesney LA; Geist PA; Datta S
    Front Neural Circuits; 2017; 11():49. PubMed ID: 28729826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutual influence of sleep and circadian clocks on physiology and cognition.
    Heyde I; Kiehn JT; Oster H
    Free Radic Biol Med; 2018 May; 119():8-16. PubMed ID: 29132973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fading signatures of critical brain dynamics during sustained wakefulness in humans.
    Meisel C; Olbrich E; Shriki O; Achermann P
    J Neurosci; 2013 Oct; 33(44):17363-72. PubMed ID: 24174669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise.
    Steyn-Ross ML; Steyn-Ross DA; Wilson MT; Sleigh JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011916. PubMed ID: 17677503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus.
    Moroni F; Nobili L; De Carli F; Massimini M; Francione S; Marzano C; Proserpio P; Cipolli C; De Gennaro L; Ferrara M
    Neuroimage; 2012 Mar; 60(1):497-504. PubMed ID: 22178807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence.
    Datta S; Maclean RR
    Neurosci Biobehav Rev; 2007; 31(5):775-824. PubMed ID: 17445891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings.
    Blatter K; Cajochen C
    Physiol Behav; 2007 Feb; 90(2-3):196-208. PubMed ID: 17055007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related decrease in cortical excitability circadian variations during sleep loss and its links with cognition.
    Gaggioni G; Ly JQM; Muto V; Chellappa SL; Jaspar M; Meyer C; Delfosse T; Vanvinckenroye A; Dumont R; Coppieters 't Wallant D; Berthomier C; Narbutas J; Van Egroo M; Luxen A; Salmon E; Collette F; Phillips C; Schmidt C; Vandewalle G
    Neurobiol Aging; 2019 Jun; 78():52-63. PubMed ID: 30877839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sex differences in the circadian regulation of sleep and waking cognition in humans.
    Santhi N; Lazar AS; McCabe PJ; Lo JC; Groeger JA; Dijk DJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):E2730-9. PubMed ID: 27091961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.