BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15810818)

  • 1. Pairwise coupling in an Arg-Phe-Met triplet stabilizes alpha-helical peptide via shared rotamer preferences.
    Iqbalsyah TM; Doig AJ
    J Am Chem Soc; 2005 Apr; 127(14):5002-3. PubMed ID: 15810818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions.
    Stapley BJ; Rohl CA; Doig AJ
    Protein Sci; 1995 Nov; 4(11):2383-91. PubMed ID: 8563636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the nature of the methionine-pi interaction in beta-hairpin peptide model systems.
    Tatko CD; Waters ML
    Protein Sci; 2004 Sep; 13(9):2515-22. PubMed ID: 15322289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position dependence of non-polar amino acid intrinsic helical propensities.
    Petukhov M; Muñoz V; Yumoto N; Yoshikawa S; Serrano L
    J Mol Biol; 1998 Apr; 278(1):279-89. PubMed ID: 9571050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The (i, i + 4) Phe-His interaction studied in an alanine-based alpha-helix.
    Armstrong KM; Fairman R; Baldwin RL
    J Mol Biol; 1993 Mar; 230(1):284-91. PubMed ID: 8450542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotamer strain energy in protein helices - quantification of a major force opposing protein folding.
    Penel S; Doig AJ
    J Mol Biol; 2001 Jan; 305(4):961-8. PubMed ID: 11162106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific control of peptide assembly with combined hydrophilic and hydrophobic interfaces.
    Schnarr NA; Kennan AJ
    J Am Chem Soc; 2003 Jan; 125(3):667-71. PubMed ID: 12526666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational transition between four and five-stranded phenylalanine zippers determined by a local packing interaction.
    Liu J; Zheng Q; Deng Y; Kallenbach NR; Lu M
    J Mol Biol; 2006 Aug; 361(1):168-79. PubMed ID: 16828114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective protein-protein interactions driven by a phenylalanine interface.
    Yoder NC; Kumar K
    J Am Chem Soc; 2006 Jan; 128(1):188-91. PubMed ID: 16390146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine.
    Lee HY; Lee KH; Al-Hashimi HM; Marsh EN
    J Am Chem Soc; 2006 Jan; 128(1):337-43. PubMed ID: 16390163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides.
    North B; Cristian L; Fu Stowell X; Lear JD; Saven JG; Degrado WF
    J Mol Biol; 2006 Jun; 359(4):930-9. PubMed ID: 16697010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-bond cooperativity, vibrational coupling, and dependence of helix stability on changes in amino acid sequence in small 3 10-helical peptides. A density functional theory study.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2003 Nov; 125(46):14065-71. PubMed ID: 14611243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas phase formation of a 3(10)-helix in a three-residue peptide chain: role of side chain-backbone interactions as evidenced by IR-UV double resonance experiments.
    Chin W; Piuzzi F; Dognon JP; Dimicoli I; Tardivel B; Mons M
    J Am Chem Soc; 2005 Aug; 127(34):11900-1. PubMed ID: 16117503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing interactions between aromatic and basic side chains in alpha-helical peptides and proteins. Tyrosine effects on helix circular dichroism.
    Andrew CD; Bhattacharjee S; Kokkoni N; Hirst JD; Jones GR; Doig AJ
    J Am Chem Soc; 2002 Oct; 124(43):12706-14. PubMed ID: 12392418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides.
    Morozov AN; Lin SH
    J Phys Chem B; 2006 Oct; 110(41):20555-61. PubMed ID: 17034243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic-aromatic interactions in crystal structures of helical peptide scaffolds containing projecting phenylalanine residues.
    Aravinda S; Shamala N; Das C; Sriranjini A; Karle IL; Balaram P
    J Am Chem Soc; 2003 May; 125(18):5308-15. PubMed ID: 12720442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of helix-coil transition of block copolypeptide, Glu12-Ala12, by combined use of CD and NMR spectroscopy.
    Yamazaki T; Furuya H; Watanabe T; Miyachi S; Nishiuchi Y; Nishio H; Abe A
    Biopolymers; 2005; 80(2-3):225-32. PubMed ID: 15815984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.