These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15810839)

  • 21. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts.
    Dempsey JL; Winkler JR; Gray HB
    J Am Chem Soc; 2010 Jan; 132(3):1060-5. PubMed ID: 20043639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced reactivity of hydrophobic vitamin B12 towards the dechlorination of DDT in ionic liquid.
    Jabbar MA; Shimakoshi H; Hisaeda Y
    Chem Commun (Camb); 2007 Apr; (16):1653-5. PubMed ID: 17530090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of chlorovinylcobalamin, a putative intermediate in reductive degradation of chlorinated ethylenes.
    McCauley KM; Wilson SR; van der Donk WA
    J Am Chem Soc; 2003 Apr; 125(15):4410-1. PubMed ID: 12683797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and characterization of chlorinated alkenylcobaloximes to probe the mechanism of vitamin B(12)-catalyzed dechlorination of priority pollutants.
    McCauley KM; Wilson SR; van der Donk WA
    Inorg Chem; 2002 Jan; 41(2):393-404. PubMed ID: 11800630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic analysis of reductive nitrosylation on water-soluble cobalt(III)-porphyrins.
    Roncaroli F; van Eldik R
    J Am Chem Soc; 2006 Jun; 128(24):8042-53. PubMed ID: 16771520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin B12 catalysed reactions.
    Giedyk M; Goliszewska K; Gryko D
    Chem Soc Rev; 2015 Jun; 44(11):3391-404. PubMed ID: 25945462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism?
    Costentin C; Robert M; Savéant JM
    J Am Chem Soc; 2005 Sep; 127(35):12154-5. PubMed ID: 16131156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chelate bis(imino)pyridine cobalt complexes: synthesis, reduction, and evidence for the generation of ethene polymerization catalysts by Li+ cation activation.
    Kleigrewe N; Steffen W; Blömker T; Kehr G; Fröhlich R; Wibbeling B; Erker G; Wasilke JC; Wu G; Bazan GC
    J Am Chem Soc; 2005 Oct; 127(40):13955-68. PubMed ID: 16201818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient cross-coupling of aryl chlorides with arylzinc reagents catalyzed by amido pincer complexes of nickel.
    Wang L; Wang ZX
    Org Lett; 2007 Oct; 9(21):4335-8. PubMed ID: 17887695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NO binding to cobalamin: influence of the metal oxidation state.
    Selçuki C; van Eldik R; Clark T
    Inorg Chem; 2004 May; 43(9):2828-33. PubMed ID: 15106969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of reaction of cobalamin and cobinamide with thiocyanate.
    Dereven'kov IA; Salnikov DS; Makarov SV; Surducan M; Silaghi-Dumitrescu R; Boss GR
    J Inorg Biochem; 2013 Aug; 125():32-9. PubMed ID: 23685470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co(III) complexes with N2(SO)2-type equatorial planar ligands similar to the active center of nitrile hydratase: role of the sulfenate group in the enzymatic reaction.
    Yano T; Wasada-Tsutsui Y; Arii H; Yamaguchi S; Funahashi Y; Ozawa T; Masuda H
    Inorg Chem; 2007 Nov; 46(24):10345-53. PubMed ID: 17958357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes.
    Xi Z; Liu B; Chen W
    J Org Chem; 2008 May; 73(10):3954-7. PubMed ID: 18412386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syntheses of the terpyridine-bipyridine linked binary ligands and structural and redox properties of their cobalt complexes.
    Kon H; Nagata T
    Inorg Chem; 2009 Sep; 48(17):8593-602. PubMed ID: 19678668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cosolvent effect on the catalytic reductive dechlorination of PCE.
    Dror I; Schlautman MA
    Chemosphere; 2004 Dec; 57(10):1505-14. PubMed ID: 15519395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.
    Jain S; Reiser O
    ChemSusChem; 2008; 1(6):534-41. PubMed ID: 18702152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co2+/Co+ redox tuning in methyltransferases induced by a conformational change at the axial ligand.
    Kumar M; Kumar N; Hirao H; Kozlowski PM
    Inorg Chem; 2012 May; 51(10):5533-8. PubMed ID: 22548450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dichloroacetylene is not the precursor to dichlorinated vinylcobaloxime and vinylcobalamin in cobalt catalyzed dechlorination of perchloro- and trichloroethylene.
    McCauley KM; Wilson SR; van der Donk WA
    Inorg Chem; 2002 Nov; 41(22):5844-8. PubMed ID: 12401092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.