BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15810995)

  • 1. Optical imaging of respiratory neuron activity from the dorsal view of the lower brainstem.
    Onimaru H; Homma I
    Clin Exp Pharmacol Physiol; 2005 Apr; 32(4):297-301. PubMed ID: 15810995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in the spatio-temporal pattern of respiratory neuron activity in the medulla of late fetal rat.
    Onimaru H; Homma I
    Neuroscience; 2005; 131(4):969-77. PubMed ID: 15749349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and properties of respiratory neurons in the rostral pons of the newborn rat.
    Kobayashi S; Onimaru H; Inoue M; Inoue T; Sasa R
    Neuroscience; 2005; 134(1):317-25. PubMed ID: 15939541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory neuron group in the high cervical spinal cord discovered by optical imaging.
    Oku Y; Okabe A; Hayakawa T; Okada Y
    Neuroreport; 2008 Nov; 19(17):1739-43. PubMed ID: 18841086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro visualization of respiratory neuron activity in the newborn mouse ventral medulla.
    Onimaru H; Arata A; Arata S; Shirasawa S; Cleary ML
    Brain Res Dev Brain Res; 2004 Nov; 153(2):275-9. PubMed ID: 15527896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel functional neuron group for respiratory rhythm generation in the ventral medulla.
    Onimaru H; Homma I
    J Neurosci; 2003 Feb; 23(4):1478-86. PubMed ID: 12598636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel statistical analysis of voltage-imaging data by structural time series modeling and its application to the respiratory neuronal network.
    Kawai S; Oku Y; Okada Y; Miwakeichi F; Tamura Y; Ishiguro M
    Neurosci Res; 2009 Mar; 63(3):165-71. PubMed ID: 19110013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible involvement of neurons in locus coeruleus in inhibitory effect on glossopharyngeal expiratory activity in a neonatal rat brainstem-spinal cord preparation in vitro.
    Yamanishi T; Koizumi H; Komaki M; Ishihama K; Adachi T; Enomoto A; Takao K; Iida S; Kogo M
    Neurosci Res; 2008 Jan; 60(1):2-9. PubMed ID: 18053604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiration-related rhythmic activity in the rostral medulla of newborn rats.
    Onimaru H; Kumagawa Y; Homma I
    J Neurophysiol; 2006 Jul; 96(1):55-61. PubMed ID: 16495360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.
    Okada Y; Masumiya H; Tamura Y; Oku Y
    Eur J Neurosci; 2007 Nov; 26(10):2834-43. PubMed ID: 18001280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical recording from respiratory pattern generator of fetal mouse brainstem reveals a distributed network.
    Eugenin J; Nicholls JG; Cohen LB; Muller KJ
    Neuroscience; 2006; 137(4):1221-7. PubMed ID: 16361062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous oscillatory burst activity in the piriform-amygdala region and its relation to in vitro respiratory activity in newborn rats.
    Onimaru H; Homma I
    Neuroscience; 2007 Jan; 144(1):387-94. PubMed ID: 17074446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nitric oxide is involved in the modulation of central respiratory rhythm].
    Li ZQ; Wu ZH; Shi Y; Wang NQ
    Sheng Li Xue Bao; 2003 Oct; 55(5):560-4. PubMed ID: 14566404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The airway-related parasympathetic motoneurones in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control.
    Chen Y; Li M; Liu H; Wang J
    Exp Physiol; 2007 Jan; 92(1):99-108. PubMed ID: 17099059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Non-participation of bulbar inspiratory neurons in the esophago-diaphragmatic inhibitory reflex].
    Marlot D; Duron B
    C R Acad Sci III; 1986; 303(11):475-8. PubMed ID: 3096507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [5-HT(1A) receptors are involved in the modulation of respiratory rhythmical discharge activity in the medulla oblongata slice preparation of neonatal rats].
    Qin Z; Wu ZH; Wang XF
    Sheng Li Xue Bao; 2007 Jun; 59(3):293-8. PubMed ID: 17579783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal activity patterns during respiratory rhythmogenesis in the rat ventrolateral medulla.
    Fisher JA; Marchenko VA; Yodh AG; Rogers RF
    J Neurophysiol; 2006 Mar; 95(3):1982-91. PubMed ID: 16339002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical imaging of propofol-induced central respiratory depression in medulla-spinal cord preparations from newborn rats.
    Kashiwagi M; Osaka Y; Onimaru H; Takeda J
    Clin Exp Pharmacol Physiol; 2011 Mar; 38(3):186-91. PubMed ID: 21251047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anesthetics on hypoglossal nerve discharge and c-Fos expression in brainstem hypoglossal premotor neurons.
    Roda F; Pio J; Bianchi AL; Gestreau C
    J Comp Neurol; 2004 Jan; 468(4):571-86. PubMed ID: 14689487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.