These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15811220)

  • 1. Brain-based devices for the study of nervous systems and the development of intelligent machines.
    Krichmar JL; Edelman GM
    Artif Life; 2005; 11(1-2):63-77. PubMed ID: 15811220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning in and from brain-based devices.
    Edelman GM
    Science; 2007 Nov; 318(5853):1103-5. PubMed ID: 18006739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New robotics: design principles for intelligent systems.
    Pfeifer R; Iida F; Bongard J
    Artif Life; 2005; 11(1-2):99-120. PubMed ID: 15811222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embodied models of delayed neural responses: spatiotemporal categorization and predictive motor control in brain based devices.
    McKinstry JL; Seth AK; Edelman GM; Krichmar JL
    Neural Netw; 2008 May; 21(4):553-61. PubMed ID: 18495424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agent-based brain modeling by means of hierarchical cooperative coevolution.
    Maniadakis M; Trahanias P
    Artif Life; 2009; 15(3):293-336. PubMed ID: 19239349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing causal interactions in neural populations.
    Seth AK; Edelman GM
    Neural Comput; 2007 Apr; 19(4):910-33. PubMed ID: 17348767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotics and neuroscience: a rhythmic interaction.
    Ronsse R; Lefèvre P; Sepulchre R
    Neural Netw; 2008 May; 21(4):577-83. PubMed ID: 18490135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system.
    Mihailidis A; Elinas P; Boger J; Hoey J
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):136-43. PubMed ID: 17436886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical control of a prosthetic arm for self-feeding.
    Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB
    Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device.
    Krichmar JL; Edelman GM
    Cereb Cortex; 2002 Aug; 12(8):818-30. PubMed ID: 12122030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic neural field approach to cognitive robotics.
    Erlhagen W; Bicho E
    J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robotic assistant for stereotactic neurosurgery on small animals.
    Ramrath L; Hofmann UG; Schweikard A
    Int J Med Robot; 2008 Dec; 4(4):295-303. PubMed ID: 18956415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic vision and emotion calculation in intelligent virtual human modeling.
    Zhao Y; Kang J; Wright DK
    Biomed Sci Instrum; 2007; 43():360-5. PubMed ID: 17487108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability assessment of an automated forced swim test device using two mouse strains.
    Kurtuncu M; Luka LJ; Dimitrijevic N; Uz T; Manev H
    J Neurosci Methods; 2005 Nov; 149(1):26-30. PubMed ID: 15967510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling brain emergent behaviours through coevolution of neural agents.
    Maniadakis M; Trahanias P
    Neural Netw; 2006 Jun; 19(5):705-20. PubMed ID: 15990275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective on intelligent devices and environments in medical rehabilitation.
    Cooper RA; Dicianno BE; Brewer B; LoPresti E; Ding D; Simpson R; Grindle G; Wang H
    Med Eng Phys; 2008 Dec; 30(10):1387-98. PubMed ID: 18993108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.