These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15811220)

  • 21. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and simulation of an intelligent ER force element for rehabilitation of human hands.
    Hosseini-Sianaki A; Nikkhoo M
    Stud Health Technol Inform; 2008; 133():132-40. PubMed ID: 18376021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotics: self-reproducing machines.
    Zykov V; Mytilinaios E; Adams B; Lipson H
    Nature; 2005 May; 435(7039):163-4. PubMed ID: 15889080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ontology for a Robot Scientist.
    Soldatova LN; Clare A; Sparkes A; King RD
    Bioinformatics; 2006 Jul; 22(14):e464-71. PubMed ID: 16873508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Evolution of human brain and intelligence].
    Lakatos L; Janka Z
    Ideggyogy Sz; 2008 Jul; 61(7-8):220-9. PubMed ID: 18763477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volumetric resection using the SurgiScope: a quantitative accuracy analysis of robot-assisted resection.
    Amin DV; Lunsford LD
    Stereotact Funct Neurosurg; 2004; 82(5-6):250-3. PubMed ID: 15637447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From self-observation to imitation: visuomotor association on a robotic hand.
    Chaminade T; Oztop E; Cheng G; Kawato M
    Brain Res Bull; 2008 Apr; 75(6):775-84. PubMed ID: 18394524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots.
    Galán F; Nuttin M; Lew E; Ferrez PW; Vanacker G; Philips J; Millán Jdel R
    Clin Neurophysiol; 2008 Sep; 119(9):2159-69. PubMed ID: 18621580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.
    Wright CH; Barrett SF; Pack DJ
    Biomed Sci Instrum; 2005; 41():253-8. PubMed ID: 15850114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotic applications in abdominal surgery: their limitations and future developments.
    Taylor GW; Jayne DG
    Int J Med Robot; 2007 Mar; 3():3-9. PubMed ID: 17441019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial intelligence and robotics in high throughput post-genomics.
    Laghaee A; Malcolm C; Hallam J; Ghazal P
    Drug Discov Today; 2005 Sep; 10(18):1253-9. PubMed ID: 16213418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotic sound-source localisation architecture using cross-correlation and recurrent neural networks.
    Murray JC; Erwin HR; Wermter S
    Neural Netw; 2009 Mar; 22(2):173-89. PubMed ID: 19233613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.
    Mahncke HW; Bronstone A; Merzenich MM
    Prog Brain Res; 2006; 157():81-109. PubMed ID: 17046669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolving mobile robots able to display collective behaviors.
    Baldassarre G; Nolfi S; Parisi D
    Artif Life; 2003; 9(3):255-67. PubMed ID: 14556687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perceptual limits for a robotic rehabilitation environment using visual feedback distortion.
    Brewer BR; Fagan M; Klatzky RL; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):1-11. PubMed ID: 15813400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.