BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15811334)

  • 1. Efficient suppression of the amber codon in E. coli in vitro translation system.
    Agafonov DE; Huang Y; Grote M; Sprinzl M
    FEBS Lett; 2005 Apr; 579(10):2156-60. PubMed ID: 15811334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous and site-directed incorporation of an ester linkage and an azide group into a polypeptide by in vitro translation.
    Humenik M; Huang Y; Safronov I; Sprinzl M
    Org Biomol Chem; 2009 Oct; 7(20):4218-24. PubMed ID: 19795060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations.
    Lesjak S; Weygand-Durasevic I
    FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 3' codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells.
    Phillips-Jones MK; Watson FJ; Martin R
    J Mol Biol; 1993 Sep; 233(1):1-6. PubMed ID: 8377179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of RNA aptamer against Escherichia coli release factor 1.
    Sando S; Ogawa A; Nishi T; Hayami M; Aoyama Y
    Bioorg Med Chem Lett; 2007 Mar; 17(5):1216-20. PubMed ID: 17188871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene function analysis by amber stop codon suppression: CMBF is a nuclear protein that supports growth and development of Dictyostelium amoebae.
    Winckler T; Trautwein C; Tschepke C; Neuhäuser C; Zündorf I; Beck P; Vogel G; Dingermann T
    J Mol Biol; 2001 Jan; 305(4):703-14. PubMed ID: 11162086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro read-through polysome/ribosome display of full-length protein ORF and it's applications.
    Ogawa A; Sando S; Aoyama Y
    Nucleic Acids Symp Ser (Oxf); 2005; (49):267-8. PubMed ID: 17150736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.
    Delgado-Olivares L; Zamora-Romo E; Guarneros G; Hernandez-Sanchez J
    Biochimie; 2006 Jul; 88(7):793-800. PubMed ID: 16488066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3' terminal codon pairs with different frequency of occurrence on the expression of cat gene in Escherichia coli.
    Boycheva SS; Bachvarov BI; Berzal-Heranz A; Ivanov IG
    Curr Microbiol; 2004 Feb; 48(2):97-101. PubMed ID: 15057475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does Escherichia coli optimize the economics of the translation process?
    Solomovici J; Lesnik T; Reiss C
    J Theor Biol; 1997 Apr; 185(4):511-21. PubMed ID: 9156078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of protein synthesis from a termination codon.
    Varshney U; RajBhandary UL
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1586-90. PubMed ID: 2406724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins.
    Kwon I; Wang P; Tirrell DA
    J Am Chem Soc; 2006 Sep; 128(36):11778-83. PubMed ID: 16953616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins.
    Braud S; Moutiez M; Belin P; Abello N; Drevet P; Zinn-Justin S; Courçon M; Masson C; Dassa J; Charbonnier JB; Boulain JC; Ménez A; Genet R; Gondry M
    J Proteome Res; 2005; 4(6):2137-47. PubMed ID: 16335960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of point mutations by use of amber stop codon suppression.
    Lesley SA
    Methods Mol Biol; 1996; 57():65-73. PubMed ID: 8849995
    [No Abstract]   [Full Text] [Related]  

  • 20. RNA cleavage linked with ribosomal action.
    Yamanishi H; Yonesaki T
    Genetics; 2005 Oct; 171(2):419-25. PubMed ID: 16020788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.