BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15811369)

  • 21. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.
    Kuratani M; Bessho Y; Nishimoto M; Grosjean H; Yokoyama S
    J Mol Biol; 2008 Jan; 375(4):1064-75. PubMed ID: 18068186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1.
    Kumarevel T; Sakamoto K; Gopinath SC; Shinkai A; Kumar PK; Yokoyama S
    Proteins; 2008 May; 71(3):1156-62. PubMed ID: 18004791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of a dimeric archaeal splicing endonuclease.
    Li H; Abelson J
    J Mol Biol; 2000 Sep; 302(3):639-48. PubMed ID: 10986124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily.
    Simanshu DK; Savithri HS; Murthy MR
    J Mol Biol; 2005 Sep; 352(4):876-92. PubMed ID: 16139298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics.
    D'Ambrosio K; Pedone E; Langella E; De Simone G; Rossi M; Pedone C; Bartolucci S
    J Mol Biol; 2006 Sep; 362(4):743-52. PubMed ID: 16934838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1.
    Munir A; Banerjee A; Shuman S
    Nucleic Acids Res; 2018 Oct; 46(18):9617-9624. PubMed ID: 30202863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of the cambialistic superoxide dismutase from Aeropyrum pernix K1--insights into the enzyme mechanism and stability.
    Nakamura T; Torikai K; Uegaki K; Morita J; Machida K; Suzuki A; Kawata Y
    FEBS J; 2011 Feb; 278(4):598-609. PubMed ID: 21182595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex.
    Mori S; Yamasaki M; Maruyama Y; Momma K; Kawai S; Hashimoto W; Mikami B; Murata K
    Biochem Biophys Res Commun; 2005 Feb; 327(2):500-8. PubMed ID: 15629142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide.
    Nakamura T; Kado Y; Yamaguchi T; Matsumura H; Ishikawa K; Inoue T
    J Biochem; 2010 Jan; 147(1):109-15. PubMed ID: 19819903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains.
    Athanasiadis A; Placido D; Maas S; Brown BA; Lowenhaupt K; Rich A
    J Mol Biol; 2005 Aug; 351(3):496-507. PubMed ID: 16023667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.
    Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K
    Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.
    Han S; Craig JA; Putnam CD; Carozzi NB; Tainer JA
    Nat Struct Biol; 1999 Oct; 6(10):932-6. PubMed ID: 10504727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of the S. cerevisiae D-ribose-5-phosphate isomerase: comparison with the archaeal and bacterial enzymes.
    Graille M; Meyer P; Leulliot N; Sorel I; Janin J; Van Tilbeurgh H; Quevillon-Cheruel S
    Biochimie; 2005 Aug; 87(8):763-9. PubMed ID: 16054529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7.
    Miyazono K; Tsujimura M; Kawarabayasi Y; Tanokura M
    Proteins; 2007 Jun; 67(4):1138-46. PubMed ID: 17357153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the mosquitocidal toxin from Bacillus sphaericus.
    Reinert DJ; Carpusca I; Aktories K; Schulz GE
    J Mol Biol; 2006 Apr; 357(4):1226-36. PubMed ID: 16483607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins.
    Holbourn KP; Shone CC; Acharya KR
    FEBS J; 2006 Oct; 273(20):4579-93. PubMed ID: 16956368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.