BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 15811383)

  • 41. Bovine caveolin-2 cloning and effects of shear stress on its localization in bovine aortic endothelial cells.
    Boyd N; Park H; Sun WP; Coleman S; Cherukuri R; Jo H
    Endothelium; 2004; 11(3-4):189-98. PubMed ID: 15370296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes.
    Tang Z; Okamoto T; Boontrakulpoontawee P; Katada T; Otsuka AJ; Lisanti MP
    J Biol Chem; 1997 Jan; 272(4):2437-45. PubMed ID: 8999956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.
    Le PU; Guay G; Altschuler Y; Nabi IR
    J Biol Chem; 2002 Feb; 277(5):3371-9. PubMed ID: 11724808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation.
    Sowa G; Pypaert M; Fulton D; Sessa WC
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6511-6. PubMed ID: 12743374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic.
    Pelkmans L; Bürli T; Zerial M; Helenius A
    Cell; 2004 Sep; 118(6):767-80. PubMed ID: 15369675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction.
    Schlegel A; Lisanti MP
    Cytokine Growth Factor Rev; 2001 Mar; 12(1):41-51. PubMed ID: 11312118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation.
    Chin YH; Lee A; Kan HW; Laiman J; Chuang MC; Hsieh ST; Liu YW
    Hum Mol Genet; 2015 Oct; 24(19):5542-54. PubMed ID: 26199319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The large GTPase dynamin regulates actin comet formation and movement in living cells.
    Orth JD; Krueger EW; Cao H; McNiven MA
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):167-72. PubMed ID: 11782546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions.
    Song KS; Tang Z; Li S; Lisanti MP
    J Biol Chem; 1997 Feb; 272(7):4398-403. PubMed ID: 9020162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oligomeric structure of caveolin: implications for caveolae membrane organization.
    Sargiacomo M; Scherer PE; Tang Z; Kübler E; Song KS; Sanders MC; Lisanti MP
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9407-11. PubMed ID: 7568142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scaffolds and the scaffolding domain: an alternative paradigm for caveolin-1 signaling.
    Lim JE; Bernatchez P; Nabi IR
    Biochem Soc Trans; 2024 Apr; 52(2):947-959. PubMed ID: 38526159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamin 2 interacts with connexin 26 to regulate its degradation and function in gap junction formation.
    Xiao D; Chen S; Shao Q; Chen J; Bijian K; Laird DW; Alaoui-Jamali MA
    Int J Biochem Cell Biol; 2014 Oct; 55():288-97. PubMed ID: 25263585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease.
    Quest AF; Leyton L; Párraga M
    Biochem Cell Biol; 2004 Feb; 82(1):129-44. PubMed ID: 15052333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phospholipase D1 in caveolae: regulation by protein kinase Calpha and caveolin-1.
    Kim JH; Han JM; Lee S; Kim Y; Lee TG; Park JB; Lee SD; Suh PG; Ryu SH
    Biochemistry; 1999 Mar; 38(12):3763-9. PubMed ID: 10090765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A.
    Razani B; Lisanti MP
    Am J Physiol Cell Physiol; 2001 Oct; 281(4):C1241-50. PubMed ID: 11546661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a splice variant of mouse caveolin-2 mRNA encoding an isoform lacking the C-terminal domain.
    Kogo H; Ishiguro K; Kuwaki S; Fujimoto T
    Arch Biochem Biophys; 2002 May; 401(1):108-14. PubMed ID: 12054493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A.
    Razani B; Rubin CS; Lisanti MP
    J Biol Chem; 1999 Sep; 274(37):26353-60. PubMed ID: 10473592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Striatin, a calmodulin-dependent scaffolding protein, directly binds caveolin-1.
    Gaillard S; Bartoli M; Castets F; Monneron A
    FEBS Lett; 2001 Nov; 508(1):49-52. PubMed ID: 11707266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling.
    Escriche M; Burgueño J; Ciruela F; Canela EI; Mallol J; Enrich C; Lluís C; Franco R
    Exp Cell Res; 2003 Apr; 285(1):72-90. PubMed ID: 12681288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes.
    Li S; Song KS; Lisanti MP
    J Biol Chem; 1996 Jan; 271(1):568-73. PubMed ID: 8550621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.