BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15811673)

  • 1. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge.
    Mrayyan B; Battikhi MN
    J Hazard Mater; 2005 Apr; 120(1-3):127-34. PubMed ID: 15811673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study.
    Gojgic-Cvijovic GD; Milic JS; Solevic TM; Beskoski VP; Ilic MV; Djokic LS; Narancic TM; Vrvic MM
    Biodegradation; 2012 Feb; 23(1):1-14. PubMed ID: 21604191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates.
    Arvanitis N; Katsifas EA; Chalkou KI; Meintanis C; Karagouni AD
    Biotechnol Lett; 2008 Dec; 30(12):2105-10. PubMed ID: 18688575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.
    Okieimen CO; Okieimen FE
    Environ Sci; 2005; 12(1):1-8. PubMed ID: 15793556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions.
    Sood N; Lal B
    J Environ Manage; 2009 Apr; 90(5):1728-36. PubMed ID: 19111380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor.
    Wang J; Wang X; Zhao Z; Li J
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):679-85. PubMed ID: 18465123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple methodology to evaluate influence of H2O2 and Fe(2+) concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum.
    Mater L; Rosa EV; Berto J; Corrêa AX; Schwingel PR; Radetski CM
    J Hazard Mater; 2007 Oct; 149(2):379-86. PubMed ID: 17493749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils.
    Dashti N; Khanafer M; El-Nemr I; Sorkhoh N; Ali N; Radwan S
    Chemosphere; 2009 Mar; 74(10):1354-9. PubMed ID: 19103456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon content reduction in a model reluctant clayey soil: slurry phase n-hexadecane bioremediation.
    Partovinia A; Naeimpoor F; Hejazi P
    J Hazard Mater; 2010 Sep; 181(1-3):133-9. PubMed ID: 20570040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Vaerløse, Denmark.
    Höhener P; Dakhel N; Christophersen M; Broholm M; Kjeldsen P
    J Contam Hydrol; 2006 Dec; 88(3-4):337-58. PubMed ID: 16963155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation.
    Souza TS; Hencklein FA; Angelis DF; Gonçalves RA; Fontanetti CS
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1363-8. PubMed ID: 19285726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of oil tank bottom sludge using microbial consortia.
    Gallego JL; García-Martínez MJ; Llamas JF; Belloch C; Peláez AI; Sánchez J
    Biodegradation; 2007 Jun; 18(3):269-81. PubMed ID: 16821101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of cyclodextrins in soil.
    Fenyvesi E; Gruiz K; Verstichel S; De Wilde B; Leitgib L; Csabai K; Szaniszlo N
    Chemosphere; 2005 Aug; 60(8):1001-8. PubMed ID: 15993146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of herbaceous plants for peat-enhanced rehabilitation of contaminated soil with oily sludge.
    Wang S; Zhang C; Lu G; Li F; Guo G
    Int J Phytoremediation; 2016; 18(1):62-8. PubMed ID: 26114406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant.
    Kao CM; Chai CT; Liu JK; Yeh TY; Chen KF; Chen SC
    Water Res; 2004 Feb; 38(3):663-72. PubMed ID: 14723935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge.
    Calvo C; Toledo FL; González-López J
    J Biotechnol; 2004 Apr; 109(3):255-62. PubMed ID: 15066763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on bioremediation of oil-polluted wetland at Liaodong Bay in northeast China.
    Ye S; Huang L; Li YO; Ding M; Hu Y; Ding D
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):543-8. PubMed ID: 16237524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An attempt to use selected strains of bacteria adapted to high concentrations of petroleum oil to increase the effective removal of petroleum products in excess activated sludge in laboratory conditions.
    Bieszkiewicz E; Horoch M; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1998; 47(3):305-12. PubMed ID: 9990713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.