BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15811994)

  • 21. Proteomic profiling of Escherichia coli proteins under high cell density fed-batch cultivation with overexpression of phosphogluconolactonase.
    Wang Y; Wu SL; Hancock WS; Trala R; Kessler M; Taylor AH; Patel PS; Aon JC
    Biotechnol Prog; 2005; 21(5):1401-11. PubMed ID: 16209543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational regulation of periplasmic folding assistants and proteases as a valuable strategy to improve production of translocated recombinant proteins in Escherichia coli.
    Gawin A; Ertesvåg H; Hansen SAH; Malmo J; Brautaset T
    BMC Biotechnol; 2020 May; 20(1):24. PubMed ID: 32393331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of a single-chain fragment of the murine anti-idiotypic antibody ACA125 as phage-displayed and soluble antibody by recombinant phage antibody technique.
    Schlebusch H; Reinartz S; Kaiser R; Grünn U; Wagner U
    Hybridoma; 1997 Feb; 16(1):47-52. PubMed ID: 9085128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli.
    Han MJ; Park SJ; Park TJ; Lee SY
    Biotechnol Bioeng; 2004 Nov; 88(4):426-36. PubMed ID: 15382106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments.
    Hayhurst A; Harris WJ
    Protein Expr Purif; 1999 Apr; 15(3):336-43. PubMed ID: 10092493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating controlled reducing environments in aerobic recombinant Escherichia coli fermentations: effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity.
    Gill RT; Cha HJ; Jain A; Rao G; Bentley WE
    Biotechnol Bioeng; 1998 Jul; 59(2):248-59. PubMed ID: 10099335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of a stress-minimisation paradigm in high cell density fed-batch Escherichia coli fermentations to optimise recombinant protein production.
    Wyre C; Overton TW
    J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1391-404. PubMed ID: 25056840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteome analysis of recombinant Escherichia coli producing human glucagon-like peptide-1.
    Lee DH; Kim SG; Park YC; Nam SW; Lee KH; Seo JH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):323-30. PubMed ID: 17049938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale bacterial fermentation and isolation of scFv multimers using a heat-inducible bacterial expression vector.
    Bayly AM; Kortt AA; Hudson PJ; Power BE
    J Immunol Methods; 2002 Apr; 262(1-2):217-27. PubMed ID: 11983235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG).
    Lloyd LJ; Jones SE; Jovanovic G; Gyaneshwar P; Rolfe MD; Thompson A; Hinton JC; Buck M
    J Biol Chem; 2004 Dec; 279(53):55707-14. PubMed ID: 15485810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between phage-shock proteins in Escherichia coli.
    Adams H; Teertstra W; Demmers J; Boesten R; Tommassen J
    J Bacteriol; 2003 Feb; 185(4):1174-80. PubMed ID: 12562786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing Recombinant Protein Production in the Escherichia coli Periplasm Alleviates Stress.
    Baumgarten T; Ytterberg AJ; Zubarev RA; de Gier JW
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow-cytometric detection of changes in the physiological state of E. coli expressing a heterologous membrane protein during carbon-limited fedbatch cultivation.
    Looser V; Hammes F; Keller M; Berney M; Kovar K; Egli T
    Biotechnol Bioeng; 2005 Oct; 92(1):69-78. PubMed ID: 16142799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli.
    Kyratsous CA; Panagiotidis CA
    Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escherichia coli malate dehydrogenase, a novel solubility enhancer for heterologous proteins synthesized in Escherichia coli.
    Park JS; Han KY; Song JA; Ahn KY; Seo HS; Lee J
    Biotechnol Lett; 2007 Oct; 29(10):1513-8. PubMed ID: 17549433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maintaining rapid growth in moderate-density Escherichia coli fermentations.
    Zawada J; Swartz J
    Biotechnol Bioeng; 2005 Feb; 89(4):407-15. PubMed ID: 15635610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic transcriptional response of Escherichia coli to inclusion body formation.
    Baig F; Fernando LP; Salazar MA; Powell RR; Bruce TF; Harcum SW
    Biotechnol Bioeng; 2014 May; 111(5):980-99. PubMed ID: 24338599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intra- and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins.
    Dueñas M; Vázquez J; Ayala M; Söderlind E; Ohlin M; Pérez L; Borrebaeck CA; Gavilondo JV
    Biotechniques; 1994 Mar; 16(3):476-7, 480-3. PubMed ID: 7910466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperproduction of recombinant ferredoxins in escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hs cA-fdx-ORF3 gene cluster.
    Nakamura M; Saeki K; Takahashi Y
    J Biochem; 1999 Jul; 126(1):10-8. PubMed ID: 10393315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations.
    Carneiro S; Villas-Bôas SG; Ferreira EC; Rocha I
    Mol Biosyst; 2011 Mar; 7(3):899-910. PubMed ID: 21152511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.