BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15812621)

  • 21. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance Evaluation of Jaipur Knee Joint through Kinematics and Kinetics Gait Symmetry with Unilateral Transfemoral Indian Amputees.
    Mishra P; Singh S; Ranjan V; Singh S; Vidyarthi A
    J Med Syst; 2019 Jan; 43(3):55. PubMed ID: 30694396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices.
    Johansson JL; Sherrill DM; Riley PO; Bonato P; Herr H
    Am J Phys Med Rehabil; 2005 Aug; 84(8):563-75. PubMed ID: 16034225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets.
    Cutti AG; Verni G; Migliore GL; Amoresano A; Raggi M
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):61. PubMed ID: 30255808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimisation of the prescription for trans-tibial (TT) amputees.
    Cortés A; Viosca E; Hoyos JV; Prat J; Sánchez-Lacuesta J
    Prosthet Orthot Int; 1997 Dec; 21(3):168-74. PubMed ID: 9453087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.
    Narang YS; Murthy Arelekatti VN; Winter AG
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27429248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An automatic hinge system for leg orthoses.
    Rietman JS; Goudsmit J; Meulemans D; Halbertsma JP; Geertzen JH
    Prosthet Orthot Int; 2004 Apr; 28(1):64-8. PubMed ID: 15171581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of a user-adaptive prosthetic knee on planned gait termination.
    Prinsen EC; Nederhand MJ; Koopman BF; Rietman JS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1254-1259. PubMed ID: 28813993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait analysis of transfemoral amputee patients using prostheses with two different knee joints.
    Boonstra AM; Schrama JM; Eisma WH; Hof AL; Fidler V
    Arch Phys Med Rehabil; 1996 May; 77(5):515-20. PubMed ID: 8629932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new modular six-bar linkage trans-femoral prosthesis for walking and squatting.
    Chakraborty JK; Patil KM
    Prosthet Orthot Int; 1994 Aug; 18(2):98-108. PubMed ID: 7991367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits.
    Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH
    Prosthet Orthot Int; 1997 Apr; 21(1):17-27. PubMed ID: 9141122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance assessment of the Terry Fox jogging prosthesis for above-knee amputees.
    DiAngelo DJ; Winter DA; Ghista DN; Newcombe WR
    J Biomech; 1989; 22(6-7):543-58. PubMed ID: 2808440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps.
    Wolf EJ; Everding VQ; Linberg AL; Schnall BL; Czerniecki JM; Gambel JM
    J Rehabil Res Dev; 2012; 49(6):831-42. PubMed ID: 23299255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.