BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15812767)

  • 1. Comparing measurements of retinal nerve fiber layer thickness obtained on scanning laser polarimetry with fixed and variable corneal compensator.
    Da Pozzo S; Iacono P; Marchesan R; Vattovani O; Ravalico G
    Eur J Ophthalmol; 2005; 15(2):239-45. PubMed ID: 15812767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Bagga H; Greenfield DS; Feuer W; Knighton RW
    Am J Ophthalmol; 2003 Apr; 135(4):521-9. PubMed ID: 12654370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes.
    Bowd C; Zangwill LM; Weinreb RN
    Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Sehi M; Ume S; Greenfield DS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2099-104. PubMed ID: 17460267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC; Zangwill L; Weinreb RN
    Am J Ophthalmol; 2002 Jul; 134(1):27-33. PubMed ID: 12095804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter.
    Tannenbaum DP; Hoffman D; Lemij HG; Garway-Heath DF; Greenfield DS; Caprioli J
    Ophthalmology; 2004 Feb; 111(2):259-64. PubMed ID: 15019373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes.
    Sehi M; Guaqueta DC; Feuer WJ; Greenfield DS;
    Am J Ophthalmol; 2007 Feb; 143(2):272-9. PubMed ID: 17157800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation.
    Weinreb RN; Bowd C; Zangwill LM
    Arch Ophthalmol; 2003 Feb; 121(2):218-24. PubMed ID: 12583788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H; Greenfield DS; Knighton RW
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between scanning laser polarimetry with enhanced corneal compensation and with variable corneal compensation.
    Kim KH; Choi J; Lee CH; Cho BJ; Kook MS
    Korean J Ophthalmol; 2008 Mar; 22(1):18-25. PubMed ID: 18323701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation.
    Bagga H; Greenfield DS; Feuer WJ
    Am J Ophthalmol; 2005 Mar; 139(3):437-46. PubMed ID: 15767051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic capability of scanning laser polarimetry with and without enhanced corneal compensation and optical coherence tomography.
    Benítez-del-Castillo J; Martinez A; Regi T
    Eur J Ophthalmol; 2011; 21(3):228-36. PubMed ID: 20872357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning laser polarimetry with variable corneal compensation and detection of glaucomatous optic neuropathy.
    Da Pozzo S; Iacono P; Marchesan R; Fantin A; Ravalico G
    Graefes Arch Clin Exp Ophthalmol; 2005 Aug; 243(8):774-9. PubMed ID: 15756574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings.
    Brusini P; Salvetat ML; Parisi L; Zeppieri M; Tosoni C
    Eur J Ophthalmol; 2005; 15(4):468-76. PubMed ID: 16001380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atypical birefringence pattern and the diagnostic ability of scanning laser polarimetry with enhanced corneal compensation in glaucoma.
    Rao HL; Yadav RK; Begum VU; Addepalli UK; Senthil S; Choudhari NS; Garudadri CS
    Acta Ophthalmol; 2015 Mar; 93(2):e105-10. PubMed ID: 25270298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GDx-VCC performance in discriminating normal from glaucomatous eyes with early visual field loss.
    Da Pozzo S; Fuser M; Vattovani O; Di Stefano G; Ravalico G
    Graefes Arch Clin Exp Ophthalmol; 2006 Jun; 244(6):689-95. PubMed ID: 16292656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation.
    Reus NJ; Zhou Q; Lemij HG
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3870-7. PubMed ID: 16936099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry.
    Schlottmann PG; De Cilla S; Greenfield DS; Caprioli J; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1823-9. PubMed ID: 15161846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma.
    Medeiros FA; Zangwill LM; Bowd C; Bernd AS; Weinreb RN
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2606-12. PubMed ID: 12766063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation.
    Mai TA; Reus NJ; Lemij HG
    Ophthalmology; 2007 Nov; 114(11):1988-93. PubMed ID: 17459481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.