These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15812849)

  • 1. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices.
    Mela P; van den Berg A; Fintschenko Y; Cummings EB; Simmons BA; Kirby BJ
    Electrophoresis; 2005 May; 26(9):1792-9. PubMed ID: 15812849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.
    Davalos RV; McGraw GJ; Wallow TI; Morales AM; Krafcik KL; Fintschenko Y; Cummings EB; Simmons BA
    Anal Bioanal Chem; 2008 Feb; 390(3):847-55. PubMed ID: 17624517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalization of cyclo-olefin polymer substrates by plasma oxidation: stable film containing carboxylic acid groups for capturing biorecognition elements.
    Gubala V; Le NC; Gandhiraman RP; Coyle C; Daniels S; Williams DE
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):544-8. PubMed ID: 20728322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the surface modification of microchannels for microcapillary electrophoresis chips.
    Lee GB; Lin CH; Lee KH; Lin YF
    Electrophoresis; 2005 Dec; 26(24):4616-24. PubMed ID: 16358252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance characterization of an insulator-based dielectrophoretic microdevice.
    Ozuna-Chacón S; Lapizco-Encinas BH; Rito-Palomares M; Martínez-Chapa SO; Reyes-Betanzo C
    Electrophoresis; 2008 Aug; 29(15):3115-22. PubMed ID: 18654979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambient pressure effects on the electrokinetic potential of Zeonor-water interfaces.
    Tandon V; Kirby BJ
    J Colloid Interface Sci; 2011 Sep; 361(1):381-7. PubMed ID: 21696752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance of cyclic olefin copolymer-based capillary electrophoretic chips.
    Roy S; Das T; Yue CY
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5683-9. PubMed ID: 23748936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays.
    Dudek MM; Gandhiraman RP; Volcke C; Cafolla AA; Daniels S; Killard AJ
    Langmuir; 2009 Sep; 25(18):11155-61. PubMed ID: 19735157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis.
    Xu F; Baba Y
    Electrophoresis; 2004 Jul; 25(14):2332-45. PubMed ID: 15274016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeta potential of microfluidic substrates: 2. Data for polymers.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):203-13. PubMed ID: 14743474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry.
    Vickers JA; Dressen BM; Weston MC; Boonsong K; Chailapakul O; Cropek DM; Henry CS
    Electrophoresis; 2007 Apr; 28(7):1123-9. PubMed ID: 17340646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A
    Electrophoresis; 2005 Aug; 26(16):3160-8. PubMed ID: 16041703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution.
    Dougherty GM; Rose KA; Tok JB; Pannu SS; Chuang FY; Sha MY; Chakarova G; Penn SG
    Electrophoresis; 2008 Mar; 29(5):1131-9. PubMed ID: 18246574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.