BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15812849)

  • 1. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices.
    Mela P; van den Berg A; Fintschenko Y; Cummings EB; Simmons BA; Kirby BJ
    Electrophoresis; 2005 May; 26(9):1792-9. PubMed ID: 15812849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.
    Davalos RV; McGraw GJ; Wallow TI; Morales AM; Krafcik KL; Fintschenko Y; Cummings EB; Simmons BA
    Anal Bioanal Chem; 2008 Feb; 390(3):847-55. PubMed ID: 17624517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalization of cyclo-olefin polymer substrates by plasma oxidation: stable film containing carboxylic acid groups for capturing biorecognition elements.
    Gubala V; Le NC; Gandhiraman RP; Coyle C; Daniels S; Williams DE
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):544-8. PubMed ID: 20728322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the surface modification of microchannels for microcapillary electrophoresis chips.
    Lee GB; Lin CH; Lee KH; Lin YF
    Electrophoresis; 2005 Dec; 26(24):4616-24. PubMed ID: 16358252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance characterization of an insulator-based dielectrophoretic microdevice.
    Ozuna-Chacón S; Lapizco-Encinas BH; Rito-Palomares M; Martínez-Chapa SO; Reyes-Betanzo C
    Electrophoresis; 2008 Aug; 29(15):3115-22. PubMed ID: 18654979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambient pressure effects on the electrokinetic potential of Zeonor-water interfaces.
    Tandon V; Kirby BJ
    J Colloid Interface Sci; 2011 Sep; 361(1):381-7. PubMed ID: 21696752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance of cyclic olefin copolymer-based capillary electrophoretic chips.
    Roy S; Das T; Yue CY
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5683-9. PubMed ID: 23748936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays.
    Dudek MM; Gandhiraman RP; Volcke C; Cafolla AA; Daniels S; Killard AJ
    Langmuir; 2009 Sep; 25(18):11155-61. PubMed ID: 19735157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis.
    Xu F; Baba Y
    Electrophoresis; 2004 Jul; 25(14):2332-45. PubMed ID: 15274016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeta potential of microfluidic substrates: 2. Data for polymers.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):203-13. PubMed ID: 14743474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry.
    Vickers JA; Dressen BM; Weston MC; Boonsong K; Chailapakul O; Cropek DM; Henry CS
    Electrophoresis; 2007 Apr; 28(7):1123-9. PubMed ID: 17340646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A
    Electrophoresis; 2005 Aug; 26(16):3160-8. PubMed ID: 16041703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution.
    Dougherty GM; Rose KA; Tok JB; Pannu SS; Chuang FY; Sha MY; Chakarova G; Penn SG
    Electrophoresis; 2008 Mar; 29(5):1131-9. PubMed ID: 18246574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.