These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1581323)

  • 1. Characterization of essential arginine residues implicated in the renal transport of phosphate and glucose.
    Strévey J; Vachon V; Beaumier B; Giroux S; Béliveau R
    Biochim Biophys Acta; 1992 Apr; 1106(1):110-6. PubMed ID: 1581323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of arginine modification on kidney brush-border-membrane transport activity.
    Strevey J; Brunette MG; Béliveau R
    Biochem J; 1984 Nov; 223(3):793-802. PubMed ID: 6508741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by phenylglyoxal of the sodium-coupled fluxes of glucose and phosphate in renal brush-border membranes.
    Béliveau R; Bernier M; Giroux S; Bates D
    Biochem Cell Biol; 1988 Sep; 66(9):1005-12. PubMed ID: 3190881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase.
    Boivin D; Lin W; Béliveau R
    Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sodium gradient induces conformational changes in the renal phosphate carrier.
    Béliveau R; Strevey J
    J Biol Chem; 1987 Dec; 262(35):16885-91. PubMed ID: 3680276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginyl and histidyl groups are essential for organic anion exchange in renal brush-border membrane vesicles.
    Sokol PP; Holohan PD; Ross CR
    J Biol Chem; 1988 May; 263(15):7118-23. PubMed ID: 3366770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between Na+-dependent uptake of D-glucose, phosphate and L-alanine in rat renal brush border membrane vesicles.
    Thierry J; Poujeol P; Ripoche P
    Biochim Biophys Acta; 1981 Oct; 647(2):203-10. PubMed ID: 7295725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kidney brush-border membrane transporters: differential sensitivity to diethyl pyrocarbonate.
    Beaumier B; Béliveau R
    Biochim Biophys Acta; 1991 Sep; 1068(2):142-8. PubMed ID: 1911827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets.
    Cheng L; Liang CT; Sacktor B
    Am J Physiol; 1983 Aug; 245(2):F175-80. PubMed ID: 6881335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH gradient-stimulated phosphate transport in outer medullary brush-border membranes.
    Quamme GA; Walker JJ; Yan TS
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F639-48. PubMed ID: 2679145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metabolic acidosis on phosphate transport by the renal brush-border membrane.
    Levine BS; Ho K; Kraut JA; Coburn JW; Kurokawa K
    Biochim Biophys Acta; 1983 Jan; 727(1):7-12. PubMed ID: 6824655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline phosphatase activity does not mediate phosphate transport in the renal-cortical brush-border membrane.
    Tenenhouse HS; Scriver CR; Vizel EJ
    Biochem J; 1980 Aug; 190(2):473-6. PubMed ID: 7470062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylglyoxal suppresses cationic lysine/K+ symport under alkaline conditions in brush border membrane vesicles from larval Manduca sexta midgut.
    Parthasarathy R; Harvey WR
    Arch Insect Biochem Physiol; 1995; 28(3):237-45. PubMed ID: 7696664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet.
    Kempson SA; Dousa TP
    Life Sci; 1979 Mar; 24(10):881-7. PubMed ID: 449597
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of the intestinal Na-phosphate cotransporter.
    Peerce BE
    Am J Physiol; 1989 Apr; 256(4 Pt 1):G645-52. PubMed ID: 2705525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent.
    Wieth JO; Bjerrum PJ; Borders CL
    J Gen Physiol; 1982 Feb; 79(2):283-312. PubMed ID: 6276497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes.
    Bindels RJ; van den Broek LA; van Os CH
    Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical properties of the anion transport inhibitory binding site of arginine-specific reagents in human red blood cell membranes.
    Julien T; Betakis E; Zaki L
    Biochim Biophys Acta; 1990 Jul; 1026(1):43-50. PubMed ID: 2378880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.