These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1581323)

  • 21. Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles.
    Barrett PQ; Aronson PS
    Am J Physiol; 1982 Feb; 242(2):F126-31. PubMed ID: 7065130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH on phosphate transport in rat renal brush border membrane vesicles.
    Amstutz M; Mohrmann M; Gmaj P; Murer H
    Am J Physiol; 1985 May; 248(5 Pt 2):F705-10. PubMed ID: 3993795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of parathyrin on the transport properties of isolated renal brush-border vesicles.
    Evers C; Murer H; Kinne R
    Biochem J; 1978 Apr; 172(1):49-56. PubMed ID: 207266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retention of phosphate transport function of rat renal brush border membranes isolated from frozen cortex.
    Kempson SA
    Biochem Pharmacol; 1982 Jan; 31(2):251-4. PubMed ID: 6460505
    [No Abstract]   [Full Text] [Related]  

  • 25. 1,25-Dihydroxyvitamin D stimulates sodium-dependent phosphate transport by renal outer cortical brush-border membrane vesicles by directly affecting membrane fluidity.
    Suzuki M; Kawaguchi Y; Momose M; Morita T; Yokoyama K; Miyahara T
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1193-8. PubMed ID: 3342065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of parathyroid hormone and dietary phosphate on phosphate transport in renal outer cortical and outer medullary brush-border membrane vesicles.
    Quamme GA
    Biochim Biophys Acta; 1990 May; 1024(1):122-30. PubMed ID: 2337610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on inactivation of anion transport in human red blood cell membrane by reversibly and irreversibly acting arginine-specific reagents.
    Julien T; Zaki L
    J Membr Biol; 1988 Jun; 102(3):217-24. PubMed ID: 3172180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arginyl residues of adrenodoxin reductase as the anion recognition site for 2'-phosphate group of NADP+1.
    Nonaka Y; Sugiyama T; Yamano T
    J Biochem; 1982 Dec; 92(6):1693-701. PubMed ID: 7161255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of pH and sodium on phosphate transport across brush border membrane vesicles of small intestine.
    Danisi G; Murer H; Straub RW
    Adv Exp Med Biol; 1984; 178():173-80. PubMed ID: 6507155
    [No Abstract]   [Full Text] [Related]  

  • 31. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM; Igarashi P; Noltmann EA
    Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystine uptake by rat renal brush-border vesicles.
    McNamara PD; Pepe LM; Segal S
    Biochem J; 1981 Feb; 194(2):443-9. PubMed ID: 7306000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study on the mechanism of placental transport of phosphate (using human placental microvillous (brush border) membrane vesicles)].
    Iioka H; Moriyama I; Amasaki M; Itoh K; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Dec; 37(12):2675-80. PubMed ID: 4086899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of arginine modification on K(+)-dependent leucine uptake in brush-border membrane vesicles from the midgut of Philosamia cynthia larvae.
    Parenti P; Hanozet GM; Villa M; Giordana B
    Biochim Biophys Acta; 1994 Apr; 1191(1):27-32. PubMed ID: 8155681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1983 Aug; 245(2):F151-8. PubMed ID: 6309010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone.
    Tenenhouse HS; Lee J; Harvey N
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F420-6. PubMed ID: 1832265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal sodium-D-glucose cotransport system. Involvement of tyrosine residues in sodium-transporter interaction.
    Lin JT; Stroh A; Kinne R
    Biochim Biophys Acta; 1982 Nov; 692(2):210-7. PubMed ID: 6890850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers.
    Béliveau R; Demeule M; Ibnoul-Khatib H; Bergeron M; Beauregard G; Potier M
    Biochem J; 1988 Jun; 252(3):807-13. PubMed ID: 3421923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginyl residues are involved in the transport of Fe2+ through the plasma membrane of the mammalian reticulocyte.
    González-Sepúlveda M; Núñez MT
    J Membr Biol; 1994 Sep; 141(3):225-30. PubMed ID: 7807521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of p-aminohippuric acid, uric acid and glucose in highly purified rabbit renal brush border membranes.
    Kippen I; Hirayama B; Klinenberg JR; Wright EM
    Biochim Biophys Acta; 1979 Sep; 556(1):161-74. PubMed ID: 38845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.