These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1581323)

  • 41. Hydrolysis of nicotinamide-adenine dinucleotide by purified renal brush-border membranes. Mechanism of NAD+ inhibition of brush-border membrane phosphate-transport activity.
    Tenenhouse HS; Chu YL
    Biochem J; 1982 Jun; 204(3):635-8. PubMed ID: 6812564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrogenicity of phosphate transport by renal brush-border membranes.
    Béliveau R; Ibnoul-Khatib H
    Biochem J; 1988 Jun; 252(3):801-6. PubMed ID: 3421922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of chronic cisplatin administration on phosphate and glucose transport by the renal brush border membrane.
    Halabe A; Wong NL; Sutton RA
    Nephron; 1991; 57(2):197-200. PubMed ID: 2020348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anion transport in red blood cells and arginine specific reagents. (1). Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane.
    Zaki L
    Biochem Biophys Res Commun; 1983 Jan; 110(2):616-24. PubMed ID: 6838541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane.
    Walker JJ; Yan TS; Quamme GA
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F226-31. PubMed ID: 3812737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Renal adaptation to a low phosphate diet in rats.
    Shah SV; Kempson SA; Northrup TE; Dousa TP
    J Clin Invest; 1979 Oct; 64(4):955-66. PubMed ID: 479377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate.
    Sheng J; Preiss J
    Biochemistry; 1997 Oct; 36(42):13077-84. PubMed ID: 9335570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG; Yee VJ
    J Clin Invest; 1981 Jan; 67(1):103-15. PubMed ID: 7451645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Some characteristics of sodium-independent phosphate transport across renal basolateral membranes.
    Azzarolo AM; Ritchie G; Quamme GA
    Biochim Biophys Acta; 1991 May; 1064(2):229-34. PubMed ID: 2036438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renal brush-border Na+-H+ exchange activity in the aging rat.
    Kinsella JL; Sacktor B
    Am J Physiol; 1987 Apr; 252(4 Pt 2):R681-6. PubMed ID: 3032004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase.
    Konishi K; Fujioka M
    Biochemistry; 1987 Dec; 26(25):8496-502. PubMed ID: 3442671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glutathione may inhibit sodium-dependent phosphate transport by renal brush-border membrane vesicles.
    Suzuki M; Kawaguchi Y; Ogawa A; Yamamoto H; Momose M; Morita T; Yokoyama K; Unemura S; Miyahara T
    Nihon Jinzo Gakkai Shi; 1989 Jun; 31(6):623-8. PubMed ID: 2795990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The action of arginine-specific reagents on ionic and gating currents in frog myelinated nerve.
    Meves H; Rubly N; Stämpfli R
    Biochim Biophys Acta; 1988 Aug; 943(1):1-12. PubMed ID: 2456783
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles.
    Stoll R; Kinne R; Murer H
    Biochem J; 1979 Jun; 180(3):465-70. PubMed ID: 486124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucocorticoids increase the Na+-H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles.
    Freiberg JM; Kinsella J; Sacktor B
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4932-6. PubMed ID: 6956901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal.
    Cottingham IR; Austin AJ; Slabas AR
    Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical modification of the calmodulin-stimulated phosphatase, calcineurin, by phenylglyoxal.
    King MM; Heiny LP
    J Biol Chem; 1987 Aug; 262(22):10658-62. PubMed ID: 3611085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.