These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15813411)

  • 1. Investigating the stationarity of paediatric aspiration signals.
    Chau T; Chau D; Casas M; Berall G; Kenny DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):99-105. PubMed ID: 15813411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of penetration--aspiration versus healthy swallows using dual-axis swallowing accelerometry signals in dysphagic subjects.
    Sejdić E; Steele CM; Chau T
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1859-66. PubMed ID: 23372074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Describing the nonstationarity level of neurological signals based on quantifications of time-frequency representation.
    Tong S; Li Z; Zhu Y; Thakor NV
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1780-5. PubMed ID: 17926676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An examination of the Runs Test, Reverse Arrangements Test, and modified Reverse Arrangements Test for assessing surface EMG signal stationarity.
    Beck TW; Housh TJ; Weir JP; Cramer JT; Vardaxis V; Johnson GO; Coburn JW; Malek MH; Mielke M
    J Neurosci Methods; 2006 Sep; 156(1-2):242-8. PubMed ID: 16621017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering.
    Aboy M; Márquez OW; McNames J; Hornero R; Trong T; Goldstein B
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1485-9. PubMed ID: 16119245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical Directional Dissimilarities in Tri-axial Swallowing Accelerometry Signals.
    Movahedi F; Kurosu A; Coyle JL; Perera S; Sejdic E
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):447-458. PubMed ID: 27295677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationarity distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping.
    Alves N; Chau T
    J Electromyogr Kinesiol; 2008 Jun; 18(3):509-15. PubMed ID: 17276085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of locomotor activity by acceleration measurement: validation in Parkinson disease.
    Keenan DB; Wilhelm FH
    Biomed Sci Instrum; 2005; 41():329-34. PubMed ID: 15850127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of dual-axis swallowing accelerometry signals in healthy subjects with analysis of anthropometric effects on duration of swallowing activities.
    Sejdić E; Steele CM; Chau T
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1090-7. PubMed ID: 19171514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of heart rate variability during alterations in stress: complex demodulation vs. spectral analysis.
    Wilhelm FH; Grossman P; Roth WT
    Biomed Sci Instrum; 2005; 41():346-51. PubMed ID: 15850130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time and time-frequency characterization of dual-axis swallowing accelerometry signals.
    Lee J; Steele CM; Chau T
    Physiol Meas; 2008 Sep; 29(9):1105-20. PubMed ID: 18756027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal dynamics of body motion in post-stroke hemiplegic patients during walking.
    Akay M; Sekine M; Tamura T; Higashi Y; Fujimoto T
    J Neural Eng; 2004 Jun; 1(2):111-6. PubMed ID: 15876629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm.
    Tarvainen MP; Georgiadis SD; Ranta-Aho PO; Karjalainen PA
    Physiol Meas; 2006 Mar; 27(3):225-39. PubMed ID: 16462010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients.
    Gómez C; Mediavilla A; Hornero R; Abásolo D; Fernández A
    Med Eng Phys; 2009 Apr; 31(3):306-13. PubMed ID: 18676171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased nonstationarity of neonatal heart rate before the clinical diagnosis of sepsis.
    Cao H; Lake DE; Griffin MP; Moorman JR
    Ann Biomed Eng; 2004 Feb; 32(2):233-44. PubMed ID: 15008371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of texture stationarity using the asymptotic behavior of the empirical mean and variance.
    Blanc R; Da Costa JP; Stitou Y; Baylou P; Germain C
    IEEE Trans Image Process; 2008 Sep; 17(9):1481-90. PubMed ID: 18701388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling analysis of baseline dual-axis cervical accelerometry signals.
    Sejdić E; Steele CM; Chau T
    Comput Methods Programs Biomed; 2011 Sep; 103(3):113-20. PubMed ID: 20708292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of minimum sampling rate and signal reconstruction on surface electromyographic signals.
    Durkin JL; Callaghan JP
    J Electromyogr Kinesiol; 2005 Oct; 15(5):474-81. PubMed ID: 15935959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrumentation for bedside analysis of swallowing disorders.
    Greco CS; Nunes LG; Melo PL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():923-6. PubMed ID: 21096774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of subtle nocturnal motor activity from 3-D accelerometry recordings in epilepsy patients.
    Nijsen TM; Cluitmans PJ; Arends JB; Griep PA
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2073-81. PubMed ID: 18018703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.