These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Architecture of the vimentin cytoskeleton is modified by perturbation of the GTPase ARF1. Styers ML; Kowalczyk AP; Faundez V J Cell Sci; 2006 Sep; 119(Pt 17):3643-54. PubMed ID: 16912072 [TBL] [Abstract][Full Text] [Related]
8. The dynamic and motile properties of intermediate filaments. Helfand BT; Chang L; Goldman RD Annu Rev Cell Dev Biol; 2003; 19():445-67. PubMed ID: 14570577 [TBL] [Abstract][Full Text] [Related]
9. The latest killer AP. Del Val M; Yewdell JW Nat Immunol; 2003 Nov; 4(11):1049-50. PubMed ID: 14586420 [No Abstract] [Full Text] [Related]
10. Vimentin intermediate filaments function as a physical barrier during intracellular trafficking of caveolin-1. Jiu Y Biochem Biophys Res Commun; 2018 Dec; 507(1-4):161-167. PubMed ID: 30415776 [TBL] [Abstract][Full Text] [Related]
11. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Norlén L; Masich S; Goldie KN; Hoenger A Exp Cell Res; 2007 Jun; 313(10):2217-27. PubMed ID: 17499715 [TBL] [Abstract][Full Text] [Related]
13. Pigment dilution mutants from fish models with connection to lysosome-related organelles and vesicular traffic genes. Navarro RE; Ramos-Balderas JL; Guerrero I; Pelcastre V; Maldonado E Zebrafish; 2008 Dec; 5(4):309-18. PubMed ID: 19133829 [TBL] [Abstract][Full Text] [Related]
14. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Akisaka T; Yoshida H; Suzuki R; Takama K Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726 [TBL] [Abstract][Full Text] [Related]
15. Endosomal cholesterol traffic: vesicular and non-vesicular mechanisms meet. Hölttä-Vuori M; Ikonen E Biochem Soc Trans; 2006 Jun; 34(Pt 3):392-4. PubMed ID: 16709170 [TBL] [Abstract][Full Text] [Related]
16. Cytoskeleton structure and dynamic behaviour: quick excursus from basic molecular mechanisms to some implications in cancer chemotherapy. Alberti C Eur Rev Med Pharmacol Sci; 2009; 13(1):13-21. PubMed ID: 19364082 [TBL] [Abstract][Full Text] [Related]
17. Phosphoinositides: regulators of membrane traffic and protein function. Krauss M; Haucke V FEBS Lett; 2007 May; 581(11):2105-11. PubMed ID: 17316616 [TBL] [Abstract][Full Text] [Related]
18. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Rybakin V; Clemen CS Bioessays; 2005 Jun; 27(6):625-32. PubMed ID: 15892111 [TBL] [Abstract][Full Text] [Related]
19. Neuronal and non-neuronal functions of the AP-3 sorting machinery. Newell-Litwa K; Seong E; Burmeister M; Faundez V J Cell Sci; 2007 Feb; 120(Pt 4):531-41. PubMed ID: 17287392 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructural analysis of ESCRT proteins suggests a role for endosome-associated tubular-vesicular membranes in ESCRT function. Welsch S; Habermann A; Jäger S; Müller B; Krijnse-Locker J; Kräusslich HG Traffic; 2006 Nov; 7(11):1551-66. PubMed ID: 17014699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]