These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15814066)

  • 1. Trick or treat: the effect of placebo on the power of pharmacogenetic association studies.
    Singer C; Grossman I; Avidan N; Beckmann JS; Pe'er I
    Hum Genomics; 2005 Mar; 2(1):28-38. PubMed ID: 15814066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative power of SNPs and haplotype as genetic markers for association tests.
    Bader JS
    Pharmacogenomics; 2001 Feb; 2(1):11-24. PubMed ID: 11258193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests.
    Liu W; Zhao W; Chase GA
    Hum Hered; 2006; 61(1):31-44. PubMed ID: 16557026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the power of tag SNPs in the mapping of quantitative trait loci (QTL) with extremal and random samples.
    Zhang K; Sun F
    BMC Genet; 2005 Oct; 6():51. PubMed ID: 16236175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using multiple drug exposure levels to optimize power in pharmacogenetic trials.
    Judson R
    J Clin Pharmacol; 2003 Aug; 43(8):816-24. PubMed ID: 12953338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacogenetic effect of an endothelin-1 haplotype on response to bucindolol therapy in chronic heart failure.
    Taylor MR; Slavov D; Humphrey K; Zhao L; Cockroft J; Zhu X; Lavori P; Bristow MR; Mestroni L; Lazzeroni LC
    Pharmacogenet Genomics; 2009 Jan; 19(1):35-43. PubMed ID: 18953265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study.
    Kocabas NA; Faghel C; Barreto M; Kasper S; Linotte S; Mendlewicz J; Noro M; Oswald P; Souery D; Zohar J; Massat I
    Int Clin Psychopharmacol; 2010 Jul; 25(4):218-27. PubMed ID: 20531207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SurvivalGWAS_Power: a user friendly tool for power calculations in pharmacogenetic studies with "time to event" outcomes.
    Syed H; Jorgensen AL; Morris AP
    BMC Bioinformatics; 2016 Dec; 17(1):523. PubMed ID: 27931206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers.
    Grossman I; Avidan N; Singer C; Goldstaub D; Hayardeny L; Eyal E; Ben-Asher E; Paperna T; Pe'er I; Lancet D; Beckmann JS; Miller A
    Pharmacogenet Genomics; 2007 Aug; 17(8):657-66. PubMed ID: 17622942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of biallelic haplotype and genotype frequencies to genotyping error.
    Moskvina V; Schmidt KM
    Biometrics; 2006 Dec; 62(4):1116-23. PubMed ID: 17156286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying bias due to allele misclassification in case-control studies of haplotypes.
    Govindarajulu US; Spiegelman D; Miller KL; Kraft P
    Genet Epidemiol; 2006 Nov; 30(7):590-601. PubMed ID: 16830341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting predictive markers for pharmacogenetic traits: tagging vs. data-mining approaches.
    Sabbagh A; Génin E; Darlu P
    Hum Hered; 2008; 66(1):10-8. PubMed ID: 18223313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Pharmacogenetic Predictive Test in asthma: proof of concept.
    Wu AC; Himes BE; Lasky-Su J; Litonjua A; Li L; Lange C; Lima J; Irvin CG; Weiss ST
    Pharmacogenet Genomics; 2010 Feb; 20(2):86-93. PubMed ID: 20032818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tests of association between quantitative traits and haplotypes in a reduced-dimensional space.
    Sha Q; Dong J; Jiang R; Zhang S
    Ann Hum Genet; 2005 Nov; 69(Pt 6):715-32. PubMed ID: 16266410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the amount of missing information in genetic association studies.
    Nicolae DL
    Genet Epidemiol; 2006 Dec; 30(8):703-17. PubMed ID: 16986163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency and power in genetic association studies.
    de Bakker PI; Yelensky R; Pe'er I; Gabriel SB; Daly MJ; Altshuler D
    Nat Genet; 2005 Nov; 37(11):1217-23. PubMed ID: 16244653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haplotype tagging single nucleotide polymorphisms and association studies.
    Thompson D; Stram D; Goldgar D; Witte JS
    Hum Hered; 2003; 56(1-3):48-55. PubMed ID: 14614238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Analysis of Phase I and Phase II Data to Enhance the Power of Pharmacogenetic Tests.
    Tessier A; Bertrand J; Chenel M; Comets E
    CPT Pharmacometrics Syst Pharmacol; 2016 Mar; 5(3):123-31. PubMed ID: 27069775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of single nucleotide polymorphisms for association studies in candidate genes.
    Génin E
    Genet Epidemiol; 2001; 21 Suppl 1():S614-9. PubMed ID: 11793749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rationale and design of the PERindopril GENEtic association study (PERGENE): a pharmacogenetic analysis of angiotensin-converting enzyme inhibitor therapy in patients with stable coronary artery disease.
    Brugts JJ; de Maat MP; Boersma E; Witteman JC; van Duijn C; Uitterlinden AG; Bertrand M; Remme W; Fox K; Ferrari R; Danser AH; Simoons ML;
    Cardiovasc Drugs Ther; 2009 Apr; 23(2):171-81. PubMed ID: 19082699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.