BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 15814305)

  • 1. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters.
    Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A
    Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonate assignment and calibration in the Raman spectrum of apatite.
    Awonusi A; Morris MD; Tecklenburg MM
    Calcif Tissue Int; 2007 Jul; 81(1):46-52. PubMed ID: 17551767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites.
    Penel G; Leroy G; Rey C; Bres E
    Calcif Tissue Int; 1998 Dec; 63(6):475-81. PubMed ID: 9817941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy.
    Tarnowski CP; Ignelzi MA; Morris MD
    J Bone Miner Res; 2002 Jun; 17(6):1118-26. PubMed ID: 12054168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba.
    Reddy BJ; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1721-8. PubMed ID: 15863040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Micro-Raman spectra for gastritis and gastric ulcer tissues].
    Wang HM; Zhang JY; Guo JY; Cai WY; Sun ZR; Wang ZG; Fang M; Sun MP; Ma SY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2038-41. PubMed ID: 18306790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A micro-Raman spectroscopic study of hydrazine-treated human dental calculus.
    Tsuda H; Jongebloed WL; Stokroos I; Arends J
    Scanning Microsc; 1996; 10(4):1015-23; discussion 1023-4. PubMed ID: 9854853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earliest mineral and matrix changes in force-induced musculoskeletal disease as revealed by Raman microspectroscopic imaging.
    Tarnowski CP; Ignelzi MA; Wang W; Taboas JM; Goldstein SA; Morris MD
    J Bone Miner Res; 2004 Jan; 19(1):64-71. PubMed ID: 14753738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone osteonal tissues by Raman spectral mapping: orientation-composition.
    Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P
    J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on human breast cancer tissues with Raman microspectroscopy].
    Yu G; Xu XX; Niu Y; Wang B; Song ZF; Zhang CP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1359-62. PubMed ID: 15762476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic study of the antimony bearing mineral langbanite.
    Bahfenne S; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):710-2. PubMed ID: 20042366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma.
    Cheng WT; Liu MT; Liu HN; Lin SY
    Microsc Res Tech; 2005 Oct; 68(2):75-9. PubMed ID: 16228983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic study of the tellurite minerals: rajite and denningite.
    Frost RL; Dickfos MJ; Keeffe EC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1512-5. PubMed ID: 18586552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy of synthetic and natural iowaite.
    Frost RL; Adebajo MO; Erickson KL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):613-20. PubMed ID: 15649791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards refining Raman spectroscopy-based assessment of bone composition.
    Shah FA
    Sci Rep; 2020 Oct; 10(1):16662. PubMed ID: 33028904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman and infrared spectroscopy of selected vanadates.
    Frost RL; Erickson KL; Weier ML; Carmody O
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Mar; 61(5):829-34. PubMed ID: 15683785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.