BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15814816)

  • 1. Functional roles of 3'-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm.
    Anzai T; Osanai M; Hamada M; Fujiwara H
    Nucleic Acids Res; 2005; 33(6):1993-2002. PubMed ID: 15814816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential motifs in the 3' untranslated region required for retrotransposition and the precise start of reverse transcription in non-long-terminal-repeat retrotransposon SART1.
    Osanai M; Takahashi H; Kojima KK; Hamada M; Fujiwara H
    Mol Cell Biol; 2004 Sep; 24(18):7902-13. PubMed ID: 15340053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria.
    Burke WD; Singh D; Eickbush TH
    Mol Biol Evol; 2003 Aug; 20(8):1260-70. PubMed ID: 12777502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage.
    Christensen S; Eickbush TH
    J Mol Biol; 2004 Mar; 336(5):1035-45. PubMed ID: 15037067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies.
    Maita N; Aoyagi H; Osanai M; Shirakawa M; Fujiwara H
    Nucleic Acids Res; 2007; 35(12):3918-27. PubMed ID: 17537809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrotransposon R1Bm endonuclease cleaves the target sequence.
    Feng Q; Schumann G; Boeke JD
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2083-8. PubMed ID: 9482842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-complementation of an endonuclease-defective tagged I element as a tool for the study of retrotransposition in Drosophila melanogaster.
    Robin S; Chambeyron S; Brun C; Bucheton A; Busseau I
    Mol Genet Genomics; 2002 Aug; 267(6):829-34. PubMed ID: 12207231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential domains for ribonucleoprotein complex formation required for retrotransposition of telomere-specific non-long terminal repeat retrotransposon SART1.
    Matsumoto T; Hamada M; Osanai M; Fujiwara H
    Mol Cell Biol; 2006 Jul; 26(13):5168-79. PubMed ID: 16782900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1996 Sep; 16(9):4726-34. PubMed ID: 8756630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 28S junctions and chimeric elements of the rDNA targeting non-LTR retrotransposon R2 in crustacean living fossils (Branchiopoda, Notostraca).
    Luchetti A; Mingazzini V; Mantovani B
    Genomics; 2012 Jul; 100(1):51-6. PubMed ID: 22564473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.
    Xiong Y; Eickbush TH
    Mol Cell Biol; 1988 Jan; 8(1):114-23. PubMed ID: 2447482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects.
    Kubo Y; Okazaki S; Anzai T; Fujiwara H
    Mol Biol Evol; 2001 May; 18(5):848-57. PubMed ID: 11319268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of rDNA-specific non-LTR retrotransposons in Cnidaria.
    Kojima KK; Kuma K; Toh H; Fujiwara H
    Mol Biol Evol; 2006 Oct; 23(10):1984-93. PubMed ID: 16870681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion.
    Gladyshev EA; Arkhipova IR
    Gene; 2009 Dec; 448(2):145-50. PubMed ID: 19744548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag.
    Nichuguti N; Hayase M; Fujiwara H
    Mol Cell Biol; 2016 May; 36(10):1494-508. PubMed ID: 26976636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes.
    Xiong Y; Burke WD; Jakubczak JL; Eickbush TH
    Nucleic Acids Res; 1988 Nov; 16(22):10561-73. PubMed ID: 2849750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates.
    Bibiłło A; Eickbush TH
    J Mol Biol; 2002 Feb; 316(3):459-73. PubMed ID: 11866511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of multiple lineages of R1 and R2 retrotransposable elements in the ribosomal RNA gene loci of Nasonia.
    Stage DE; Eickbush TH
    Insect Mol Biol; 2010 Feb; 19 Suppl 1():37-48. PubMed ID: 20167016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.
    Anzai T; Takahashi H; Fujiwara H
    Mol Cell Biol; 2001 Jan; 21(1):100-8. PubMed ID: 11113185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between R1 and R2 transposable elements in the 28S rRNA genes of insects.
    Ye J; Pérez-González CE; Eickbush DG; Eickbush TH
    Cytogenet Genome Res; 2005; 110(1-4):299-306. PubMed ID: 16093682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.