BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 15814839)

  • 1. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis.
    Atir-Lande A; Gildor T; Kornitzer D
    Mol Biol Cell; 2005 Jun; 16(6):2772-85. PubMed ID: 15814839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the Candida albicans Cdc4 protein reveals the involvement of domains in morphogenesis and cell flocculation.
    Chin C; Lai WC; Lee TL; Tseng TL; Shieh JC
    J Biomed Sci; 2013 Dec; 20(1):97. PubMed ID: 24359552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity purification of Candida albicans CaCdc4-associated proteins reveals the presence of novel proteins involved in morphogenesis.
    Tseng TL; Lai WC; Jian T; Li C; Sun HF; Way TD; Shieh JC
    Biochem Biophys Res Commun; 2010 Apr; 395(1):152-7. PubMed ID: 20361932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role of Candida albicans CDC4 in the negative regulation of biofilm formation.
    Tseng TL; Lai WC; Lee TL; Hsu WH; Sun YW; Li WC; Cheng CW; Shieh JC
    Can J Microbiol; 2015 Apr; 61(4):247-55. PubMed ID: 25719926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis.
    Butler DK; All O; Goffena J; Loveless T; Wilson T; Toenjes KA
    Fungal Genet Biol; 2006 Aug; 43(8):573-82. PubMed ID: 16730201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans.
    Lee YT; Fang YY; Sun YW; Hsu HC; Weng SM; Tseng TL; Lin TH; Shieh JC
    Int J Mol Med; 2018 Dec; 42(6):3193-3208. PubMed ID: 30320368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and functional characterization of Candida albicans CDC4.
    Shieh JC; White A; Cheng YC; Rosamond J
    J Biomed Sci; 2005 Dec; 12(6):913-24. PubMed ID: 16228290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans.
    Sela N; Atir-Lande A; Kornitzer D
    Eukaryot Cell; 2012 Jan; 11(1):42-52. PubMed ID: 22080453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans VPS11 is required for vacuole biogenesis and germ tube formation.
    Palmer GE; Cashmore A; Sturtevant J
    Eukaryot Cell; 2003 Jun; 2(3):411-21. PubMed ID: 12796286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.
    Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S
    Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of filament formation in Candida albicans by the transcriptional repressor TUP1.
    Braun BR; Johnson AD
    Science; 1997 Jul; 277(5322):105-9. PubMed ID: 9204892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans.
    Chen J; Zhou S; Wang Q; Chen X; Pan T; Liu H
    Mol Cell Biol; 2000 Dec; 20(23):8696-708. PubMed ID: 11073971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.
    Stoldt VR; Sonneborn A; Leuker CE; Ernst JF
    EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.
    Liu H; Köhler J; Fink GR
    Science; 1994 Dec; 266(5191):1723-6. PubMed ID: 7992058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 5' Untranslated Region of the
    Desai PR; Lengeler K; Kapitan M; Janßen SM; Alepuz P; Jacobsen ID; Ernst JF
    mSphere; 2018 Jul; 3(4):. PubMed ID: 29976646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.