These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1581499)

  • 1. Calibration of a resonance energy transfer imaging system.
    Ludwig M; Hensel NF; Hartzman RJ
    Biophys J; 1992 Apr; 61(4):845-57. PubMed ID: 1581499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer.
    Murata S; Herman P; Lin HJ; Lakowicz JR
    Cytometry; 2000 Nov; 41(3):178-85. PubMed ID: 11042614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [AO distribution and fluorescence spectra in myoblasts and single muscle fibres].
    Beliaeva TN; Krolenko SA; Leont'eva EA; Mozhenok TP; Salova AV; Faddeeva MD
    Tsitologiia; 2009; 51(2):103-10. PubMed ID: 19371017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Studies on application and mechanism of energy transfer system of acridine orange (AO)-rhodamine B (RB) dimer in the determination of DNA].
    Gao F; Zhu CQ; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):85-8. PubMed ID: 15768984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Determination of vitamin B12 concentration by fluorescence quenching with acridine orange-rhodamine 6G energy transfer system].
    Liu BS; Gao J; Yang GL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1080-2. PubMed ID: 16241060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity-based energy transfer measurements in digital imaging microscopy.
    Nagy P; Vámosi G; Bodnár A; Lockett SJ; Szöllösi J
    Eur Biophys J; 1998; 27(4):377-89. PubMed ID: 9691467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single photon radioluminescence. I. Theory and spectroscopic properties.
    Bicknese S; Shahrokh Z; Shohet SB; Verkman AS
    Biophys J; 1992 Nov; 63(5):1256-66. PubMed ID: 1477277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of anionic gemini surfactant: fluorescence resonance energy transfer and simulation study.
    Liu L; Fei X; Zhu S; Yu L; Zhang B
    Langmuir; 2013 Apr; 29(17):5132-7. PubMed ID: 23582023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propidium iodide and the thiol-specific reagent DACM as a dye pair for fluorescence resonance energy transfer analysis: an application to mouse sperm chromatin.
    Bottiroli G; Croce AC; Pellicciari C; Ramponi R
    Cytometry; 1994 Feb; 15(2):106-16. PubMed ID: 8168398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes.
    Maliwal BP; Kuśba J; Lakowicz JR
    Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin.
    Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF
    Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of extended nanoscale optical encoders.
    Wickersham CE; Kerr DH; Lipman EA
    Bioconjug Chem; 2010 Dec; 21(12):2234-8. PubMed ID: 21069998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectra of DNA dyes measured in a flow cytometer.
    Asbury CL; Esposito R; Farmer C; van den Engh G
    Cytometry; 1996 Jul; 24(3):234-42. PubMed ID: 8800556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer-a spectroscopic probe for organized surfactant media.
    De S; Girigoswami A
    J Colloid Interface Sci; 2004 Mar; 271(2):485-95. PubMed ID: 14972626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of acridine orange with double stranded nucleic acids. Spectral and affinity studies.
    Kapuscinski J; Darzynkiewicz Z
    J Biomol Struct Dyn; 1987 Aug; 5(1):127-43. PubMed ID: 3271462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of metallic silver particles on resonance energy transfer in labeled bovine serum albumin.
    Malicka J; Gryczynski I; Kusba J; Shen Y; Lakowicz JR
    Biochem Biophys Res Commun; 2002 Jun; 294(4):886-92. PubMed ID: 12061790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs.
    Dacres H; Wang J; Dumancic MM; Trowell SC
    Anal Chem; 2010 Jan; 82(1):432-5. PubMed ID: 19957970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle energy transfer on the cell surface.
    Bene L; Szentesi G; Mátyus L; Gáspár R; Damjanovich S
    J Mol Recognit; 2005; 18(3):236-53. PubMed ID: 15593286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.