These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1581499)

  • 21. [Fluorescence resonance energy transfer quenching method for determination of arsenic with acridine orange-rhodamine B].
    Liu BS; Gao J; Liu ZC; Yu LN; Yang DC; Yang GL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):306-8. PubMed ID: 16826913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photon statistics and dynamics of fluorescence resonance energy transfer.
    Berglund AJ; Doherty AC; Mabuchi H
    Phys Rev Lett; 2002 Aug; 89(6):068101. PubMed ID: 12190612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system.
    Wang F; Yang J; Wu X; Wang X; Feng L; Jia Z; Guo C
    J Colloid Interface Sci; 2006 Jun; 298(2):757-64. PubMed ID: 16458913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Texture analysis of fluorescence lifetime images of nuclear DNA with effect of fluorescence resonance energy transfer.
    Murata S; Herman P; Lakowicz JR
    Cytometry; 2001 Feb; 43(2):94-100. PubMed ID: 11169573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between pairs of DNA-specific fluorescent stains bound to mammalian cells.
    Langlois RG; Jensen RH
    J Histochem Cytochem; 1979 Jan; 27(1):72-9. PubMed ID: 86583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Turn off-on" phosphorescent biosensors for detection of DNA based on quantum dots/acridine orange.
    Miao Y; Li Y; Zhang Z; Yan G; Bi Y
    Anal Biochem; 2015 Apr; 475():32-9. PubMed ID: 25637306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy.
    Day RN
    Mol Endocrinol; 1998 Sep; 12(9):1410-9. PubMed ID: 9731708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel technique for viable cell determinations.
    Singh NP; Stephens RE
    Stain Technol; 1986 Sep; 61(5):315-8. PubMed ID: 2431522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward single-metal-ion sensing by Förster resonance energy transfer.
    Sutter JU; Macmillan AM; Birch DJ; Rolinski OJ
    Ann N Y Acad Sci; 2008; 1130():62-7. PubMed ID: 18596333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications.
    Gong YJ; Zhang XB; Zhang CC; Luo AL; Fu T; Tan W; Shen GL; Yu RQ
    Anal Chem; 2012 Dec; 84(24):10777-84. PubMed ID: 23171399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM; Ryder AG
    Biophys Chem; 2010 Nov; 152(1-3):55-64. PubMed ID: 20724058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA stainability in aneuploid breast tumors: comparison of four DNA fluorochromes differing in binding properties.
    Myc A; Traganos F; Lara J; Melamed MR; Darzynkiewicz Z
    Cytometry; 1992; 13(4):389-94. PubMed ID: 1326430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De-intercalation of ethidium bromide and acridine orange by xanthine derivatives and their modulatory effect on anticancer agents: a study of DNA-directed toxicity enlightened by time correlated single photon counting.
    Johnson IM; Kumar SG; Malathi R
    J Biomol Struct Dyn; 2003 Apr; 20(5):677-86. PubMed ID: 12643770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators.
    Larsen RW; Jasuja R; Hetzler RK; Muraoka PT; Andrada VG; Jameson DM
    Biophys J; 1996 Jan; 70(1):443-52. PubMed ID: 8770220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The spatial structure of lipids in human leukocytes: studies by nonradiative energy transfer.
    Gularian SK; Dobretsov GE; Kurek NK; Svetlichny VY
    Membr Cell Biol; 1997; 10(6):639-48. PubMed ID: 9231362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier.
    Yun CS; Javier A; Jennings T; Fisher M; Hira S; Peterson S; Hopkins B; Reich NO; Strouse GF
    J Am Chem Soc; 2005 Mar; 127(9):3115-9. PubMed ID: 15740151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes.
    Crissman HA; Steinkamp JA
    Eur J Histochem; 1993; 37(2):129-38. PubMed ID: 7688598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban.
    Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD
    Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer.
    Sebestyén Z; Nagy P; Horváth G; Vámosi G; Debets R; Gratama JW; Alexander DR; Szöllosi J
    Cytometry; 2002 Jul; 48(3):124-35. PubMed ID: 12116358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology.
    Kukolka F; Müller BK; Paternoster S; Arndt A; Niemeyer CM; Bräuchle C; Lamb DC
    Small; 2006 Aug; 2(8-9):1083-9. PubMed ID: 17193172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.