These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Protection and Damage Repair Mechanisms Contributed To the Survival of Li C; Zhang X; Ye T; Li X; Wang G Microbiol Spectr; 2022 Dec; 10(6):e0344022. PubMed ID: 36453906 [No Abstract] [Full Text] [Related]
23. Perchlorates on Mars enhance the bacteriocidal effects of UV light. Wadsworth J; Cockell CS Sci Rep; 2017 Jul; 7(1):4662. PubMed ID: 28684729 [TBL] [Abstract][Full Text] [Related]
24. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Osman S; Peeters Z; La Duc MT; Mancinelli R; Ehrenfreund P; Venkateswaran K Appl Environ Microbiol; 2008 Feb; 74(4):959-70. PubMed ID: 18083857 [TBL] [Abstract][Full Text] [Related]
25. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule. Fajardo-Cavazos P; Schuerger AC; Nicholson WL Astrobiology; 2010 May; 10(4):403-11. PubMed ID: 20528195 [TBL] [Abstract][Full Text] [Related]
26. Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Fendrihan S; Bérces A; Lammer H; Musso M; Rontó G; Polacsek TK; Holzinger A; Kolb C; Stan-Lotter H Astrobiology; 2009; 9(1):104-12. PubMed ID: 19215203 [TBL] [Abstract][Full Text] [Related]
27. A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Friedmann EI; Ocampo-Friedmann R Adv Space Res; 1995 Mar; 15(3):243-6. PubMed ID: 11539232 [TBL] [Abstract][Full Text] [Related]
28. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Newcombe DA; Schuerger AC; Benardini JN; Dickinson D; Tanner R; Venkateswaran K Appl Environ Microbiol; 2005 Dec; 71(12):8147-56. PubMed ID: 16332797 [TBL] [Abstract][Full Text] [Related]
29. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars. Wadsworth J; Cockell CS FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28460085 [TBL] [Abstract][Full Text] [Related]
30. Dried Biofilms of Desert Strains of Billi D; Staibano C; Verseux C; Fagliarone C; Mosca C; Baqué M; Rabbow E; Rettberg P Astrobiology; 2019 Aug; 19(8):1008-1017. PubMed ID: 30741568 [TBL] [Abstract][Full Text] [Related]
31. Impact of Simulated Martian Conditions on (Facultatively) Anaerobic Bacterial Strains from Different Mars Analogue Sites. Beblo-Vranesevic K; Bohmeier M; Schleumer S; Rabbow E; Perras AK; Moissl-Eichinger C; Schwendner P; Cockell CS; Vannier P; Marteinsson VT; Monaghan EP; Riedo A; Ehrenfreund P; Garcia-Descalzo L; Gómez F; Malki M; Amils R; Gaboyer F; Hickman-Lewis K; Westall F; Cabezas P; Walter N; Rettberg P Curr Issues Mol Biol; 2020; 38():103-122. PubMed ID: 31967578 [TBL] [Abstract][Full Text] [Related]
32. Survival of the Halophilic Archaeon Halovarius luteus after Desiccation, Simulated Martian UV Radiation and Vacuum in Comparison to Bacillus atrophaeus. Feshangsaz N; Semsarha F; Tackallou SH; Nazmi K; Monaghan EP; Riedo A; van Loon JJWA Orig Life Evol Biosph; 2020 Dec; 50(3-4):157-173. PubMed ID: 32617792 [TBL] [Abstract][Full Text] [Related]
33. Some potentialities of living organisms under simulated Martian conditions. Lozina-Lozinsky LK; Bychenkova VN; Zaar EI; Levin VL; Rumyantseva VM Life Sci Space Res; 1971; 9():159-65. PubMed ID: 12206179 [TBL] [Abstract][Full Text] [Related]
34. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Billi D; Friedmann EI; Hofer KG; Caiola MG; Ocampo-Friedmann R Appl Environ Microbiol; 2000 Apr; 66(4):1489-92. PubMed ID: 10742231 [TBL] [Abstract][Full Text] [Related]
35. Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Dartnell LR; Hunter SJ; Lovell KV; Coates AJ; Ward JM Astrobiology; 2010 Sep; 10(7):717-32. PubMed ID: 20950171 [TBL] [Abstract][Full Text] [Related]
36. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers. Schuerger AC; Richards JT; Hintze PE; Kern RG Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871 [TBL] [Abstract][Full Text] [Related]
37. Salt Tolerance and UV Protection of Godin PJ; Schuerger AC; Moores JE Astrobiology; 2021 Apr; 21(4):394-404. PubMed ID: 33237800 [TBL] [Abstract][Full Text] [Related]
38. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Napoli A; Micheletti D; Pindo M; Larger S; Cestaro A; de Vera JP; Billi D Sci Rep; 2022 May; 12(1):8437. PubMed ID: 35589950 [TBL] [Abstract][Full Text] [Related]
39. Radiation: microbial evolution, ecology, and relevance to mars missions. Rothschild LJ; Cockell CS Mutat Res; 1999 Dec; 430(2):281-91. PubMed ID: 10631343 [TBL] [Abstract][Full Text] [Related]
40. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions. Stalport F; Guan YY; Coll P; Szopa C; Macari F; Raulin F; Chaput D; Cottin H Astrobiology; 2010 May; 10(4):449-61. PubMed ID: 20528199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]