These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 15815164)
41. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses. Beblo-Vranesevic K; Bohmeier M; Perras AK; Schwendner P; Rabbow E; Moissl-Eichinger C; Cockell CS; Pukall R; Vannier P; Marteinsson VT; Monaghan EP; Ehrenfreund P; Garcia-Descalzo L; Gómez F; Malki M; Amils R; Gaboyer F; Westall F; Cabezas P; Walter N; Rettberg P PLoS One; 2017; 12(10):e0185178. PubMed ID: 29069099 [TBL] [Abstract][Full Text] [Related]
42. Carotenoid Raman Signatures Are Better Preserved in Dried Cells of the Desert Cyanobacterium Baqué M; Napoli A; Fagliarone C; Moeller R; de Vera JP; Billi D Life (Basel); 2020 Jun; 10(6):. PubMed ID: 32521820 [TBL] [Abstract][Full Text] [Related]
43. Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars. Naz N; Liu D; Harandi BF; Kounaves SP Astrobiology; 2022 Oct; 22(10):1210-1221. PubMed ID: 36000998 [TBL] [Abstract][Full Text] [Related]
44. Absorption and Scattering of UV and Visible Light Through Simulated Martian Regoliths and Rock Samples. Godin PJ; Moore CA; Smith C; Moores JE Astrobiology; 2023 Mar; 23(3):280-290. PubMed ID: 36724478 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of the Resistance of Chroococcidiopsis spp. to Sparsely and Densely Ionizing Irradiation. Verseux C; Baqué M; Cifariello R; Fagliarone C; Raguse M; Moeller R; Billi D Astrobiology; 2017 Feb; 17(2):118-125. PubMed ID: 28151689 [TBL] [Abstract][Full Text] [Related]
46. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments. Scher S; Packer E; Sagan C Life Sci Space Res; 1964; 2():352-6. PubMed ID: 11883443 [TBL] [Abstract][Full Text] [Related]
47. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. Musilova M; Wright G; Ward JM; Dartnell LR Astrobiology; 2015 Dec; 15(12):1076-90. PubMed ID: 26684506 [TBL] [Abstract][Full Text] [Related]
49. Disintegration of phycobilisomes in a rice field cyanobacterium Nostoc sp. following UV irradiation. Sinha RP; Lebert M; Kumar A; Kumar HD; Häder DP Biochem Mol Biol Int; 1995 Nov; 37(4):697-706. PubMed ID: 8589643 [TBL] [Abstract][Full Text] [Related]
50. Biological responses to the simulated Martian UV radiation of bacteriophages and isolated DNA. Fekete A; Kovács G; Hegedüs M; Módos K; Lammer H J Photochem Photobiol B; 2008 Aug; 92(2):110-6. PubMed ID: 18579407 [TBL] [Abstract][Full Text] [Related]
51. The Hypopiezotolerant Bacterium, Schuerger AC; Mickol RL; Schwendner P Life (Basel); 2020 May; 10(6):. PubMed ID: 32466370 [TBL] [Abstract][Full Text] [Related]
52. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds. Hagen CA; Hawrylewicz EJ; Anderson BT; Cephus ML Life Sci Space Res; 1970; 8():53-8. PubMed ID: 12664918 [TBL] [Abstract][Full Text] [Related]
53. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. Cockell CS; Rettberg P; Rabbow E; Olsson-Francis K ISME J; 2011 Oct; 5(10):1671-82. PubMed ID: 21593797 [TBL] [Abstract][Full Text] [Related]
54. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Dartnell LR; Page K; Jorge-Villar SE; Wright G; Munshi T; Scowen IJ; Ward JM; Edwards HG Anal Bioanal Chem; 2012 Apr; 403(1):131-44. PubMed ID: 22349404 [TBL] [Abstract][Full Text] [Related]
55. Over-Expression of UV-Damage DNA Repair Genes and Ribonucleic Acid Persistence Contribute to the Resilience of Dried Biofilms of the Desert Cyanobacetrium Mosca C; Rothschild LJ; Napoli A; Ferré F; Pietrosanto M; Fagliarone C; Baqué M; Rabbow E; Rettberg P; Billi D Front Microbiol; 2019; 10():2312. PubMed ID: 31681194 [TBL] [Abstract][Full Text] [Related]
56. Multiplication of certain soil micro-organisms under simulated Martian conditions. Imshenetsky AA; Kusjurina LA; Jakshina VM Life Sci Space Res; 1970; 8():59-61. PubMed ID: 12664919 [TBL] [Abstract][Full Text] [Related]
57. Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate Mars soil. Crawford RL; Paszczynski A; Allenbach L BMC Microbiol; 2003 Mar; 3():4. PubMed ID: 12694634 [TBL] [Abstract][Full Text] [Related]
58. Bacteria under simulated Martian conditions. Young RS; Deal PH; Bell J; Allen JL Life Sci Space Res; 1964; 2():105-11. PubMed ID: 11881642 [TBL] [Abstract][Full Text] [Related]
59. Effect of UV-C on thylakoid arrangement, pigment content and nitrogenase activity in the cyanobacterium Microchaete sp. Sahu JK; Simek M Indian J Exp Biol; 2013 May; 51(5):388-92. PubMed ID: 23821827 [TBL] [Abstract][Full Text] [Related]
60. Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis. Fagliarone C; Mosca C; Ubaldi I; Verseux C; Baqué M; Wilmotte A; Billi D Extremophiles; 2017 Nov; 21(6):981-991. PubMed ID: 28856526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]