These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1581518)
1. The effect of viscosity on the accessibility of the single tryptophan in human serum albumin. Punyiczki M; Rosenberg A Biophys Chem; 1992 Jan; 42(1):93-100. PubMed ID: 1581518 [TBL] [Abstract][Full Text] [Related]
2. Viscosity and transient solvent accessibility of Trp-63 in the native conformation of lysozyme. Somogyi B; Norman JA; Zempel L; Rosenberg A Biophys Chem; 1988 Oct; 32(1):1-13. PubMed ID: 3233307 [TBL] [Abstract][Full Text] [Related]
3. Molten globule-like state of human serum albumin at low pH. Muzammil S; Kumar Y; Tayyab S Eur J Biochem; 1999 Nov; 266(1):26-32. PubMed ID: 10542047 [TBL] [Abstract][Full Text] [Related]
4. Coupling between external viscosity and the intramolecular dynamics of ribonuclease T1: a two-phase model for the quenching of protein fluorescence. Somogyi B; Punyiczki M; Hedstrom J; Norman JA; Prendergast FG; Rosenberg A Biochim Biophys Acta; 1994 Nov; 1209(1):61-8. PubMed ID: 7947983 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen-exchange kinetics of the indole NH proton of the buried tryptophan in the constant fragment of the immunoglobulin light chain. Kawata Y; Goto Y; Hamaguchi K; Hayashi F; Kobayashi Y; Kyogoku Y Biochemistry; 1988 Jan; 27(1):346-50. PubMed ID: 2831958 [TBL] [Abstract][Full Text] [Related]
6. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH. Suzukida M; Le HP; Shahid F; McPherson RA; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2415-20. PubMed ID: 6860637 [TBL] [Abstract][Full Text] [Related]
7. The coupling of catalytically relevant conformational fluctuations in subtilisin BPN' to solution viscosity revealed by hydrogen isotope exchange and inhibitor binding. Ng K; Rosenberg A Biophys Chem; 1991 Dec; 41(3):289-99. PubMed ID: 17014796 [TBL] [Abstract][Full Text] [Related]
8. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide. Feldman I; Norton GE Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190 [TBL] [Abstract][Full Text] [Related]
9. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy. Otosu T; Nishimoto E; Yamashita S J Biochem; 2010 Feb; 147(2):191-200. PubMed ID: 19884191 [TBL] [Abstract][Full Text] [Related]
10. Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes. Crouse HF; Potoma J; Nejrabi F; Snyder DL; Chohan BS; Basu S Dalton Trans; 2012 Mar; 41(9):2720-31. PubMed ID: 22249654 [TBL] [Abstract][Full Text] [Related]
11. pH dependence of individual tryptophan N-1 hydrogen exchange rates in lysozyme and its chemically modified derivatives. Endo T; Ueda T; Yamada H; Imoto T Biochemistry; 1987 Apr; 26(7):1838-45. PubMed ID: 3593697 [TBL] [Abstract][Full Text] [Related]
12. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching. Chadborn N; Bryant J; Bain AJ; O'Shea P Biophys J; 1999 Apr; 76(4):2198-207. PubMed ID: 10096914 [TBL] [Abstract][Full Text] [Related]
13. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures]. Permiakov EA; Deĭkus GIu Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of gas-phase hydrogen/deuterium exchange and gas-phase structure of protonated phenylalanine, proline, tyrosine and tryptophan. Rozman M; Kazazić S; Klasinc L; Srzić D Rapid Commun Mass Spectrom; 2003; 17(24):2769-72. PubMed ID: 14673825 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence. Fischer CJ; Schauerte JA; Wisser KC; Gafni A; Steel DG Biochemistry; 2000 Feb; 39(6):1455-61. PubMed ID: 10684627 [TBL] [Abstract][Full Text] [Related]
16. Exposure of tryptophanyl residues and protein dynamics. Eftink MR; Ghiron CA Biochemistry; 1977 Dec; 16(25):5546-51. PubMed ID: 921949 [TBL] [Abstract][Full Text] [Related]
17. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Merrill AR; Palmer LR; Szabo AG Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465 [TBL] [Abstract][Full Text] [Related]
18. Characterization of human serum albumin forms with pH. Fluorescence lifetime studies. Amiri M; Jankeje K; Albani JR J Pharm Biomed Anal; 2010 Apr; 51(5):1097-102. PubMed ID: 20005063 [TBL] [Abstract][Full Text] [Related]
19. pH-dependent complexation of histamine H1 receptor antagonists and human serum albumin studied by UV resonance Raman spectroscopy. Tardioli S; Buijs J; Gooijer C; van der Zwan G J Phys Chem B; 2012 Mar; 116(12):3808-15. PubMed ID: 22372713 [TBL] [Abstract][Full Text] [Related]
20. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Hagag N; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2420-7. PubMed ID: 6860638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]