BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15815280)

  • 1. Flumazenil does not impair autoregulation of CBF in dogs when given with or without prior administration of midazolam.
    Artru AA
    J Neurosurg Anesthesiol; 1989 Sep; 1(3):241-8. PubMed ID: 15815280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flumazenil reversal of midazolam in dogs: dose-related changes in cerebral blood flow, metabolism, EEG, and CSF pressure.
    Artru AA
    J Neurosurg Anesthesiol; 1989 Mar; 1(1):46-55. PubMed ID: 15815239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rate of CSF formation, resistance to reabsorption of CSF, and aperiodic analysis of the EEG following administration of flumazenil to dogs.
    Artru AA
    Anesthesiology; 1990 Jan; 72(1):111-7. PubMed ID: 2105064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoregulation of cerebral blood flow during normocapnia and hypocapnia in dogs.
    Artru AA; Katz RA; Colley PS
    Anesthesiology; 1989 Feb; 70(2):288-92. PubMed ID: 2492410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroencephalogram, cerebral metabolic, and vascular responses to propofol anesthesia in dogs.
    Artru AA; Shapira Y; Bowdle TA
    J Neurosurg Anesthesiol; 1992 Apr; 4(2):99-109. PubMed ID: 15815449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracranial volume-pressure relationship following flumazenil in anesthetized dogs.
    Artru AA
    J Neurosurg Anesthesiol; 1991 Jun; 3(2):107-16. PubMed ID: 15815389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregulation of cerebral blood flow in response to adenosine-induced hypotension in dogs.
    Lam AM; Artru AA
    J Neurosurg Anesthesiol; 1992 Apr; 4(2):120-7. PubMed ID: 15815451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of flumazenil on global cerebral blood flow and on intracranial pressure in the reperfusion phase following incomplete global cerebral ischemia].
    Kochs E; Roewer N; Peter A; Schulte am Esch J
    Anasth Intensivther Notfallmed; 1988 Jun; 23(3):159-62. PubMed ID: 3135764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral blood flow at constant cerebral perfusion pressure but changing arterial and intracranial pressure: relationship to autoregulation.
    Chan KH; Miller JD; Piper IR
    J Neurosurg Anesthesiol; 1992 Jul; 4(3):188-93. PubMed ID: 15815462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraocular pressure in anaesthetized dogs given flumazenil with and without prior administration of midazolam.
    Artru AA
    Can J Anaesth; 1991 Apr; 38(3):408-14. PubMed ID: 2036701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15-1788 in dogs.
    Fleischer JE; Milde JH; Moyer TP; Michenfelder JD
    Anesthesiology; 1988 Feb; 68(2):234-42. PubMed ID: 3124673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of midazolam infusion and flumazenil administration on epinephrine arrhythmogenicity in dogs anesthetized with halothane.
    Court MH; Dodman NH; Greenblatt DJ; Agarwal RK; Kumar MS
    Anesthesiology; 1993 Jan; 78(1):155-62. PubMed ID: 8424549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs.
    Narishige T; Egashira K; Akatsuka Y; Katsuda Y; Numaguchi K; Sakata M; Takeshita A
    Circ Res; 1993 Oct; 73(4):771-6. PubMed ID: 8370126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral pressure-flow relationship during cardiopulmonary bypass in the dog at normothermia and moderate hypothermia.
    Mutch WA; Sutton IR; Teskey JM; Cheang MS; Thomson IR
    J Cereb Blood Flow Metab; 1994 May; 14(3):510-8. PubMed ID: 8163594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of flumazenil on cerebral blood flow and oxygen consumption after midazolam anaesthesia for craniotomy.
    Knudsen L; Cold GE; Holdgård HO; Johansen UT; Jensen S
    Br J Anaesth; 1991 Sep; 67(3):277-80. PubMed ID: 1911013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of jugular venous pressure on cerebral autoregulation in dogs.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1516-24. PubMed ID: 3144187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pressure on cerebrospinal fluid formation: nonsteady-state measurements in dogs.
    Sklar FH; Reisch J; Elashvili I; Smith T; Long DM
    Am J Physiol; 1980 Sep; 239(3):R277-84. PubMed ID: 7435599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of halothane in low concentrations on cerebral blood flow, cerebral metabolism, and cerebrovascular autoregulation in the baboon.
    Brüssel T; Fitch W; Brodner G; Arendt I; Van Aken H
    Anesth Analg; 1991 Dec; 73(6):758-64. PubMed ID: 1952177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.