BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15815710)

  • 41. Interplay between behavioural thermoregulation and immune response in mealworms.
    Catalán TP; Niemeyer HM; Kalergis AM; Bozinovic F
    J Insect Physiol; 2012 Nov; 58(11):1450-5. PubMed ID: 22985859
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    Urbański A; Konopińska N; Bylewska N; Gmyrek R; Spochacz-Santoro M; Bufo SA; Adamski Z
    Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects.
    Lardies MA; Arias MB; Poupin MJ; Bacigalupe LD
    J Insect Physiol; 2014 Aug; 67():70-5. PubMed ID: 24968147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration.
    Roulin A
    Biol Rev Camb Philos Soc; 2016 May; 91(2):328-48. PubMed ID: 25631160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copulation corrupts immunity: a mechanism for a cost of mating in insects.
    Rolff J; Siva-Jothy MT
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9916-8. PubMed ID: 12097648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current Status of Immune Deficiency Pathway in
    Jang HA; Kojour MAM; Patnaik BB; Han YS; Jo YH
    Front Immunol; 2022; 13():906192. PubMed ID: 35860244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens.
    Swaggerty CL; Pevzner IY; He H; Genovese KJ; Nisbet DJ; Kaiser P; Kogut MH
    Foodborne Pathog Dis; 2009 Sep; 6(7):777-83. PubMed ID: 19737057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects.
    Fedorka KM; Copeland EK; Winterhalter WE
    J Exp Biol; 2013 Nov; 216(Pt 21):4005-10. PubMed ID: 23868839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome.
    Weaver RJ; Audsley N
    Peptides; 2008 Feb; 29(2):168-78. PubMed ID: 18201799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beetle diuretic peptides: the response of mealworm (Tenebrio molitor) Malpighian tubules to synthetic peptides, and cross-reactivity studies with a dung beetle (Onthophagus gazella).
    Holtzhausen WD; Nicolson SW
    J Insect Physiol; 2007 Apr; 53(4):361-9. PubMed ID: 17292388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selection for resistance to a fungal pathogen in Drosophila melanogaster.
    Kraaijeveld AR; Godfray HC
    Heredity (Edinb); 2008 Apr; 100(4):400-6. PubMed ID: 18301441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor.
    Elliott KL; Chan KK; Stay B
    Peptides; 2010 Mar; 31(3):402-7. PubMed ID: 19793542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selection for improved resistance to Aeromonas hydrophila in Indian major carp Labeo rohita: survival and innate immune responses in first generation of resistant and susceptible lines.
    Sahoo PK; Rauta PR; Mohanty BR; Mahapatra KD; Saha JN; Rye M; Eknath AE
    Fish Shellfish Immunol; 2011 Sep; 31(3):432-8. PubMed ID: 21712094
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies.
    Ferreira AH; Cristofoletti PT; Lorenzini DM; Guerra LO; Paiva PB; Briones MR; Terra WR; Ferreira C
    J Insect Physiol; 2007 Nov; 53(11):1112-24. PubMed ID: 17644107
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TmCactin plays an important role in Gram-negative and -positive bacterial infection by regulating expression of 7 AMP genes in Tenebrio molitor.
    Jo YH; Kim YJ; Park KB; Seong JH; Kim SG; Park S; Noh MY; Lee YS; Han YS
    Sci Rep; 2017 Apr; 7():46459. PubMed ID: 28418029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenotypic plasticity and experimental evolution.
    Garland T; Kelly SA
    J Exp Biol; 2006 Jun; 209(Pt 12):2344-61. PubMed ID: 16731811
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early-life inflammation, immune response and ageing.
    Khan I; Agashe D; Rolff J
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28275145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor).
    Shea JF
    J Helminthol; 2007 Sep; 81(3):293-9. PubMed ID: 17875228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Beetle-to-beetle transmission and dispersal of Hymenolepis diminuta (Cestoda) eggs via the feces of Tenebrio molitor.
    Pappas PW; Barley AJ
    J Parasitol; 1999 Apr; 85(2):384-5. PubMed ID: 10219328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Melanin-based colour polymorphism responding to climate change.
    Roulin A
    Glob Chang Biol; 2014 Nov; 20(11):3344-50. PubMed ID: 24700793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.