These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 15816174)
1. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. Coalson RD; Kurnikova MG IEEE Trans Nanobioscience; 2005 Mar; 4(1):81-93. PubMed ID: 15816174 [TBL] [Abstract][Full Text] [Related]
2. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873 [TBL] [Abstract][Full Text] [Related]
3. Voltage-gated ion channels. Bezanilla F IEEE Trans Nanobioscience; 2005 Mar; 4(1):34-48. PubMed ID: 15816170 [TBL] [Abstract][Full Text] [Related]
4. Physical descriptions of experimental selectivity measurements in ion channels. Gillespie D; Eisenberg RS Eur Biophys J; 2002 Oct; 31(6):454-66. PubMed ID: 12355255 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. Cárdenas AE; Coalson RD; Kurnikova MG Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939 [TBL] [Abstract][Full Text] [Related]
8. The gramicidin ion channel: a model membrane protein. Kelkar DA; Chattopadhyay A Biochim Biophys Acta; 2007 Sep; 1768(9):2011-25. PubMed ID: 17572379 [TBL] [Abstract][Full Text] [Related]
9. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Kurnikova MG; Coalson RD; Graf P; Nitzan A Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470 [TBL] [Abstract][Full Text] [Related]
10. Brownian dynamics simulation for modeling ion permeation across bionanotubes. Krishnamurthy V; Chung SH IEEE Trans Nanobioscience; 2005 Mar; 4(1):102-11. PubMed ID: 15816176 [TBL] [Abstract][Full Text] [Related]
11. Quasi-steady approximation for ion channel currents. Bentele K; Falcke M Biophys J; 2007 Oct; 93(8):2597-608. PubMed ID: 17586567 [TBL] [Abstract][Full Text] [Related]
12. Semimicroscopic modeling of permeation energetics in ion channels. Jordan PC IEEE Trans Nanobioscience; 2005 Mar; 4(1):94-101. PubMed ID: 15816175 [TBL] [Abstract][Full Text] [Related]
13. Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation. Krishnamurthy V; Chung SH IEEE Trans Nanobioscience; 2006 Jun; 5(2):126-38. PubMed ID: 16805109 [TBL] [Abstract][Full Text] [Related]
14. Voltage-dependent formation of gramicidin channels in lipid bilayers. Sandblom J; Galvanovskis J; Jilderos B Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628 [TBL] [Abstract][Full Text] [Related]
15. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647 [TBL] [Abstract][Full Text] [Related]
16. Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Berezhkovskii AM; Bezrukov SM Biophys J; 2005 Mar; 88(3):L17-9. PubMed ID: 15626697 [TBL] [Abstract][Full Text] [Related]
17. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Chen D; Lear J; Eisenberg B Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596 [TBL] [Abstract][Full Text] [Related]
19. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S; Quigley EP; Crumrine DS Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442 [TBL] [Abstract][Full Text] [Related]