These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15817397)

  • 21. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential.
    Smaili SS; Hsu YT; Sanders KM; Russell JT; Youle RJ
    Cell Death Differ; 2001 Sep; 8(9):909-20. PubMed ID: 11526446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophysiological approaches to the study of protein translocation in mitochondria.
    Grigoriev SM; Muro C; Dejean LM; Campo ML; Martinez-Caballero S; Kinnally KW
    Int Rev Cytol; 2004; 238():227-74. PubMed ID: 15364200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces.
    Backes S; Herrmann JM
    Front Mol Biosci; 2017; 4():83. PubMed ID: 29270408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein import into mitochondria.
    Paschen SA; Neupert W
    IUBMB Life; 2001; 52(3-5):101-12. PubMed ID: 11798021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of mitochondrial protein import.
    Gordon DM; Dancis A; Pain D
    Essays Biochem; 2000; 36():61-73. PubMed ID: 12471903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.
    Sanjuán Szklarz LK; Kozjak-Pavlovic V; Vögtle FN; Chacinska A; Milenkovic D; Vogel S; Dürr M; Westermann B; Guiard B; Martinou JC; Borner C; Pfanner N; Meisinger C
    J Mol Biol; 2007 Apr; 368(1):44-54. PubMed ID: 17335847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase.
    Kozany C; Mokranjac D; Sichting M; Neupert W; Hell K
    Nat Struct Mol Biol; 2004 Mar; 11(3):234-41. PubMed ID: 14981506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy use by biological protein transport pathways.
    Alder NN; Theg SM
    Trends Biochem Sci; 2003 Aug; 28(8):442-51. PubMed ID: 12932733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Protein translocation across the inner mitochondrial membrane].
    Ono H
    Nihon Rinsho; 2002 Apr; 60 Suppl 4():74-8. PubMed ID: 12013988
    [No Abstract]   [Full Text] [Related]  

  • 30. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria.
    Leonhard K; Herrmann JM; Stuart RA; Mannhaupt G; Neupert W; Langer T
    EMBO J; 1996 Aug; 15(16):4218-29. PubMed ID: 8861950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways.
    Edwards R; Eaglesfield R; Tokatlidis K
    Open Biol; 2021 Mar; 11(3):210002. PubMed ID: 33715390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import.
    Mercy L; Pauw Ad; Payen L; Tejerina S; Houbion A; Demazy C; Raes M; Renard P; Arnould T
    FEBS J; 2005 Oct; 272(19):5031-55. PubMed ID: 16176275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A minimal peptide sequence that targets fluorescent and functional proteins into the mitochondrial intermembrane space.
    Ozawa T; Natori Y; Sako Y; Kuroiwa H; Kuroiwa T; Umezawa Y
    ACS Chem Biol; 2007 Mar; 2(3):176-86. PubMed ID: 17348629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria.
    Schreiner B; Westerburg H; Forné I; Imhof A; Neupert W; Mokranjac D
    Mol Biol Cell; 2012 Nov; 23(22):4335-46. PubMed ID: 22993211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsically disordered proteins in human mitochondria.
    Ito M; Tohsato Y; Sugisawa H; Kohara S; Fukuchi S; Nishikawa I; Nishikawa K
    Genes Cells; 2012 Oct; 17(10):817-25. PubMed ID: 22908957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importing mitochondrial proteins: machineries and mechanisms.
    Chacinska A; Koehler CM; Milenkovic D; Lithgow T; Pfanner N
    Cell; 2009 Aug; 138(4):628-44. PubMed ID: 19703392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial disulfide relay and its substrates: mechanisms in health and disease.
    Erdogan AJ; Riemer J
    Cell Tissue Res; 2017 Jan; 367(1):59-72. PubMed ID: 27543052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical Crosslinking in Intact Mitochondria.
    Banerjee R; Günsel U; Mokranjac D
    Methods Mol Biol; 2017; 1567():139-154. PubMed ID: 28276017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cysteine residues in mitochondrial intermembrane space proteins: more than just import.
    Habich M; Salscheider SL; Riemer J
    Br J Pharmacol; 2019 Feb; 176(4):514-531. PubMed ID: 30129023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer-Aided Prediction of Protein Mitochondrial Localization.
    Martelli PL; Savojardo C; Fariselli P; Tartari G; Casadio R
    Methods Mol Biol; 2021; 2275():433-452. PubMed ID: 34118055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.