BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 15817398)

  • 1. When X-rays modify the protein structure: radiation damage at work.
    Carugo O; Djinović Carugo K
    Trends Biochem Sci; 2005 Apr; 30(4):213-9. PubMed ID: 15817398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation damage to protein specimens from electron beam imaging and diffraction: a mini-review of anti-damage approaches, with special reference to synchrotron X-ray crystallography.
    Massover WH
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):116-27. PubMed ID: 17211078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing radiation damage in macromolecular crystals at synchrotron sources.
    Stern EA; Yacoby Y; Seidler GT; Nagle KP; Prange MP; Sorini AP; Rehr JJ; Joachimiak A
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):366-74. PubMed ID: 19307718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasing macromolecular structures with UV-induced structural changes.
    Nanao MH; Ravelli RB
    Structure; 2006 Apr; 14(4):791-800. PubMed ID: 16615919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases.
    Stroppolo ME; Nuzzo S; Pesce A; Rosano C; Battistoni A; Bolognesi M; Mobilio S; Desideri A
    Biochem Biophys Res Commun; 1998 Aug; 249(3):579-82. PubMed ID: 9731178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study.
    Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation.
    Corbett MC; Latimer MJ; Poulos TL; Sevrioukova IF; Hodgson KO; Hedman B
    Acta Crystallogr D Biol Crystallogr; 2007 Sep; 63(Pt 9):951-60. PubMed ID: 17704563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic pathway of horseradish peroxidase at high resolution.
    Berglund GI; Carlsson GH; Smith AT; Szöke H; Henriksen A; Hajdu J
    Nature; 2002 May; 417(6887):463-8. PubMed ID: 12024218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation damage in protein crystals examined under various conditions by different methods.
    Garman EF; Nave C
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):129-32. PubMed ID: 19240324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray-radiation-induced cooperative atomic movements in protein.
    Petrova T; Lunin VY; Ginell S; Hazemann I; Lazarski K; Mitschler A; Podjarny A; Joachimiak A
    J Mol Biol; 2009 Apr; 387(5):1092-105. PubMed ID: 19233199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography.
    Beitlich T; Kühnel K; Schulze-Briese C; Shoeman RL; Schlichting I
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):11-23. PubMed ID: 17211068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures.
    Kmetko J; Husseini NS; Naides M; Kalinin Y; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1030-8. PubMed ID: 16929104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The many faces of radiation-induced changes.
    Borek D; Ginell SL; Cymborowski M; Minor W; Otwinowski Z
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):24-33. PubMed ID: 17211069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW; Hasnain SS
    Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray Laue Diffraction from Protein Crystals.
    Moffat K; Szebenyi D; Bilderback D
    Science; 1984 Mar; 223(4643):1423-5. PubMed ID: 17746054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAD phasing of a structure based on cocrystallized iodides using an in-house Cu Kalpha X-ray source: effects of data redundancy and completeness on structure solution.
    Yogavel M; Gill J; Mishra PC; Sharma A
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):931-4. PubMed ID: 17642520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection?
    Macedo S; Pechlaner M; Schmid W; Weik M; Sato K; Dennison C; Djinović-Carugo K
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):191-204. PubMed ID: 19240331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase.
    Hakulinen N; Kruus K; Koivula A; Rouvinen J
    Biochem Biophys Res Commun; 2006 Dec; 350(4):929-34. PubMed ID: 17045575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential specific radiation damage in the Cu II-bound and Pd II-bound forms of an alpha-helical foldamer: a case study of crystallographic phasing by RIP and SAD.
    Fütterer K; Ravelli RB; White SA; Nicoll AJ; Allemann RK
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):264-72. PubMed ID: 18323621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa.
    Ascone I; Savino C; Kahn R; Fourme R
    Acta Crystallogr D Biol Crystallogr; 2010 Jun; 66(Pt 6):654-63. PubMed ID: 20516618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.