BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 15817456)

  • 1. A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium.
    Vetting MW; de Carvalho LP; Roderick SL; Blanchard JS
    J Biol Chem; 2005 Jun; 280(23):22108-14. PubMed ID: 15817456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural characterisation of RimL from Bacillus cereus, a new N
    Leonardo Silvestre H; Asensio JL; Blundell TL; Bastida A; Bolanos-Garcia VM
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130348. PubMed ID: 38395274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa.
    Davies AM; Tata R; Chauviac FX; Sutton BJ; Brown PR
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 May; 64(Pt 5):338-42. PubMed ID: 18453699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica.
    Stuecker TN; Hodge KM; Escalante-Semerena JC
    Mol Microbiol; 2012 May; 84(4):608-19. PubMed ID: 22497218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein N-terminal acylation: An emerging field in bacterial cell physiology.
    Parks AR; Escalante-Semerena JC
    Curr Trends Microbiol; 2022; 16():1-18. PubMed ID: 37009250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a novel GNAT superfamily N
    Ma X; Jiang K; Zhou C; Xue Y; Ma Y
    Microb Biotechnol; 2022 May; 15(5):1652-1665. PubMed ID: 34985185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of N-terminal acetylation by the ternary NatC complex.
    Deng S; Gottlieb L; Pan B; Supplee J; Wei X; Petersson EJ; Marmorstein R
    Structure; 2021 Oct; 29(10):1094-1104.e4. PubMed ID: 34019809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gcn5-Related
    Baumgartner JT; Habeeb Mohammad TS; Czub MP; Majorek KA; Arolli X; Variot C; Anonick M; Minor W; Ballicora MA; Becker DP; Kuhn ML
    Front Mol Biosci; 2021; 8():646046. PubMed ID: 33912589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of a GNAT family acetyltransferase from Elizabethkingia anophelis bound to acetyl-CoA reveals a new dimeric interface.
    Shirmast P; Ghafoori SM; Irwin RM; Abendroth J; Mayclin SJ; Lorimer DD; Edwards TE; Forwood JK
    Sci Rep; 2021 Jan; 11(1):1274. PubMed ID: 33446675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation.
    Deng S; Marmorstein R
    Trends Biochem Sci; 2021 Jan; 46(1):15-27. PubMed ID: 32912665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases.
    Abboud A; Bédoucha P; Byška J; Arnesen T; Reuter N
    Comput Struct Biotechnol J; 2020; 18():532-547. PubMed ID: 32206212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde-3-phosphate dehydrogenase from
    Tsuji K; Yoon KS; Ogo S
    FEBS Open Bio; 2019 Jan; 9(1):53-73. PubMed ID: 30652074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the 3D structure and substrate specificity of previously uncharacterized GNAT superfamily acetyltransferases from pathogenic bacteria.
    Majorek KA; Osinski T; Tran DT; Revilla A; Anderson WF; Minor W; Kuhn ML
    Biochim Biophys Acta Proteins Proteom; 2017 Jan; 1865(1):55-64. PubMed ID: 27783928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT).
    Salah Ud-Din AI; Tikhomirova A; Roujeinikova A
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27367672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis.
    Pathak D; Bhat AH; Sapehia V; Rai J; Rao A
    Sci Rep; 2016 Jun; 6():28892. PubMed ID: 27353550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation.
    Favrot L; Blanchard JS; Vergnolle O
    Biochemistry; 2016 Feb; 55(7):989-1002. PubMed ID: 26818562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.
    Ud-Din AI; Liu YC; Roujeinikova A
    PLoS One; 2015; 10(3):e0115634. PubMed ID: 25781966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RimL transacetylase provides resistance to translation inhibitor microcin C.
    Kazakov T; Kuznedelov K; Semenova E; Mukhamedyarov D; Datsenko KA; Metlitskaya A; Vondenhoff GH; Tikhonov A; Agarwal V; Nair S; Van Aerschot A; Severinov K
    J Bacteriol; 2014 Oct; 196(19):3377-85. PubMed ID: 25002546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, functional, and inhibition studies of a Gcn5-related N-acetyltransferase (GNAT) superfamily protein PA4794: a new C-terminal lysine protein acetyltransferase from pseudomonas aeruginosa.
    Majorek KA; Kuhn ML; Chruszcz M; Anderson WF; Minor W
    J Biol Chem; 2013 Oct; 288(42):30223-30235. PubMed ID: 24003232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.
    Zhao G; Allewell NM; Tuchman M; Shi D
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1253-8. PubMed ID: 23261468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.